CS-310 Scalable Software

Architectures
Lecture 4: Proxies and Caches

Steve Tarzia



[ast time: Stateless Services

e Defined stateless and stateful services.

 Showed how databases and cookies make MediaWiki stateless and
scalable.

* In other words, we achieved parallelism and distributed execution
while avoiding difficult coordination problems. Just push away all
shared state. Push state up to client and/or down to database.

* First lesson of scalability: Don’t share!



Proxies

* A proxy server 1s an intermediary router for requests.
* The proxy does not know how to answer requests, but it knows who to ask.
* The request is relayed to another server and the response relayed back.

* Proxies can be transparently added to any stateless service, like HT'TP:

(eA req req
- = . — g
(_ﬁzé Aeg resR Qw 7} rese | Age
Before S Afz‘er ada’mg pm»g/

* A load balancer is a type of proxy that connects to many app servers.

* The work done by the load balancer is very simple, so it can handle much more load
than an application servet.

* Creates a single point of contact for a large cluster of app servers.



Front-end Cache

Your
ASquid is a caching proxy. browser
(A gache stores recently ] HTTP caching MediaWiki
retrieved items for reuse) i cluster proxy
(wikipedia, wiktionary, etc) Apaches

* Frequent requests are found
in (/2 the cache, without
re-asking MediaWiki and
accessing the shared
database.

* Unusual requests are not in
(7%2:5:;) the CaChe) and are 149Apache -Core

relayed to MediaWiki.




Cache basics

* Caching is a general concept that applies to web browsers, computer
memory, filesystems, databases, etc.

* any time you wish to improve performance of data access.

* A cache is a small data storage structure designed to improve
performance when accessing a large data store.
* For now, think of our data set as a dictionary or map (storing key-value pairs).

* The cache stores the most recently or most frequently accessed data.

* Because it’s small, the cache can be accessed more quickly than the

main data store. T

Client Main storage
~




Cache hits and misses

* The cache is small, so it cannot contain every item in the data set!

When reading data:
1. Check cache first, hopetully the data will be there (called a cache hit).

* Record in the cache that this entry was accessed at this time.

2. If the data was not in the cache, it’s a cache miss.
* Get the data from the main data store.
* Make room 1n the cache by evicting another data element.

* Store the data in the cache and repeat Step 1.
THINK
Which data should be evicted?

* The most common eviction policy 1s [LRU: least recently used



Types of Caches
Managed Cache

* Client has direct access to both
the small and large data store.
* Client is responsible for
implementing the caching logic.

* Eg.: Redis, Memcached

N
w
A —
Main storage
w

Transparent Cache

e Client connects to one data store.

* Caching is implemented inside
storage “black box.”
* Ho.:
* Squid caching proxy, CDNs

e Database server.

N

Storage N
<>
Client pud Main storage

~




Stop and think

Your
A small frontend cache browser
: 0
might serv.e 90% of th§ ] HTTP caching MediWik
requests without touching " proxy
Main cluster

the Shared database. (wikipedia, wiktionary, etc) Apaches

* Why 1s Wikipedia able to
handle so many of its
requests from a cacher

* What prices do we pay for
this etficiency?

STOP

149 Apache-Core

and

THINK




"Long tail" of Wikipedia

- Volume of traffic served by

cache

Frequency of access

Wikipedia pages, ordered most popular first.
N

Size of cache

* A small fraction of
Wikipedia pages account
for a large fraction of
traffic.

* Optimize performance for
these pages.

* These will naturally be
stored in the frontend
cache.

* The "long tail" is the large
number of rarely-accessed
pages.

* Most accesses to these rare

pages involve a database
access



Data writes cause cache to be out of date!

* Remember that we can have many clients, each with its own cache.

* When data changes, out-of-date copies of data may be cached and
returned to clients. Eg., a Wiki article is edited. What to do?

Three basic solutions:

* Expire cache entries after a certain TTL (time to live)

* After writes, send new data or an invalidation message to all caches.
This creates a coherent cache. But it adds performance overhead.

* Don’t every change your data!l For example, create a new filename
every time you add new data. This is called versioned data.



HTTP support caching well

* HT'TP 1s stateless, so the same response can be saved and reused for
repeats of the same request.

e HTTP has different methods GET/PUT/POST/DELETE.

* GET requests can be cached, others may not because they modify data.

* HT'TP has Cache-Control headers for both client and server to
enable/disable caching and control expiration time.

Il

* These features allow a web browser to skip repeated requests.

* Also, an HT'TP caching proxy, like Squid, 1s compatible with any web
server and can be fransparently added.



12

-

1. Load balancers in front of Squids Databases

Fiﬂal Vi@W Can you find three 2. Squid caching HTTP proxies. ﬁlﬁ",' szji’gﬁ eo. ..

different proxy layers? 3. Load balancers in front of Apaches.

Master 5 slaves

s3: other wikis s4: commons s5: dewiki

HTTP cache | MediaWiki ﬁfg u 77 ﬂi

... Main cluster
(wikipedia, wiktionary, etc) Apaches &
NN 4&*
: 000000
””””” T . 1 e . .
Your . ? Apache-Corefex store MediaWiki is in front
browser T [~ of the databases, but
why 1sn’t it a proxy
- BN STOP
Media files \ and
THINK

149 Apache-Core

Image

QU9 —

3 mass storage |mage
servers files 6 scalers



Review

* Introduced proxies and caching.

* A proxy 1s an intermediary for handling requests.
* Useful both for caching and load balancing (discussed later).

* Often, many of a service's requests are for a few popular documents.

* Caching allows responses to be saved and repeated for duplicate requests.

* HT'TP has built-in support for caching.

13



