
CS-310 Scalable Software
Architectures

Lecture 4: Proxies and Caches
Steve Tarzia

1

Last time: Stateless Services
•Defined stateless and stateful services.
• Showed how databases and cookies make MediaWiki stateless and

scalable.
• In other words, we achieved parallelism and distributed execution

while avoiding difficult coordination problems. Just push away all
shared state. Push state up to client and/or down to database.
• First lesson of scalability: Don’t share!

2

Proxies
• A proxy server is an intermediary router for requests.
• The proxy does not know how to answer requests, but it knows who to ask.
• The request is relayed to another server and the response relayed back.
• Proxies can be transparently added to any stateless service, like HTTP:

• A load balancer is a type of proxy that connects to many app servers.
• The work done by the load balancer is very simple, so it can handle much more load

than an application server.
• Creates a single point of contact for a large cluster of app servers.

3

Before After adding proxy

Front-end Cache
• Squid is a caching proxy.
(A cache stores recently
retrieved items for reuse)
• Frequent requests are found

in (hit) the cache, without
re-asking MediaWiki and
accessing the shared
database.
• Unusual requests are not in

(miss) the cache, and are
relayed to MediaWiki.

HTTP caching
proxy

MediaWiki

Your
browser

4

Cache basics
• Caching is a general concept that applies to web browsers, computer

memory, filesystems, databases, etc.
• any time you wish to improve performance of data access.

• A cache is a small data storage structure designed to improve
performance when accessing a large data store.
• For now, think of our data set as a dictionary or map (storing key-value pairs).

• The cache stores the most recently or most frequently accessed data.
• Because it’s small, the cache can be accessed more quickly than the

main data store.

Main storage
Cache

Client

Cache hits and misses
• The cache is small, so it cannot contain every item in the data set!

When reading data:
1. Check cache first, hopefully the data will be there (called a cache hit).
• Record in the cache that this entry was accessed at this time.

2. If the data was not in the cache, it’s a cache miss.
•Get the data from the main data store.
•Make room in the cache by evicting another data element.
• Store the data in the cache and repeat Step 1.

•The most common eviction policy is LRU: least recently used
Which data should be evicted?

STOP
and

THINK

Storage

Types of Caches
Managed Cache

• Client has direct access to both
the small and large data store.
• Client is responsible for

implementing the caching logic.
• Eg.: Redis, Memcached

Transparent Cache

• Client connects to one data store.
• Caching is implemented inside

storage “black box.”
• Eg.:
• Squid caching proxy, CDNs
• Database server.

Main storage
Cache

Client
Main storage

Cache
Client

Stop and think
• A small frontend cache

might serve 90% of the
requests without touching
the shared database.
•Why is Wikipedia able to

handle so many of its
requests from a cache?
•What prices do we pay for

this efficiency?

HTTP caching
proxy

MediaWiki

Your
browser

8

STOP
and

THINK

"Long tail" of Wikipedia • A small fraction of
Wikipedia pages account
for a large fraction of
traffic.
• Optimize performance for

these pages.
• These will naturally be

stored in the frontend
cache.

• The "long tail" is the large
number of rarely-accessed
pages.
• Most accesses to these rare

pages involve a database
access

Wikipedia pages, ordered most popular first.

Fr
eq

ue
nc

y
of

 a
cc

es
s

Size of cache

Volume of traffic served by
cache

Data writes cause cache to be out of date!
• Remember that we can have many clients, each with its own cache.
•When data changes, out-of-date copies of data may be cached and

returned to clients. Eg., a Wiki article is edited. What to do?

Three basic solutions:
• Expire cache entries after a certain TTL (time to live)
• After writes, send new data or an invalidation message to all caches.

This creates a coherent cache. But it adds performance overhead.
•Don’t every change your data! For example, create a new filename

every time you add new data. This is called versioned data.

STOP
and

THINK

HTTP support caching well
•HTTP is stateless, so the same response can be saved and reused for

repeats of the same request.
•HTTP has different methods GET/PUT/POST/DELETE.
• GET requests can be cached, others may not because they modify data.

•HTTP has Cache-Control headers for both client and server to
enable/disable caching and control expiration time.

• These features allow a web browser to skip repeated requests.
• Also, an HTTP caching proxy, like Squid, is compatible with any web

server and can be transparently added.

Final view

HTTP cache MediaWiki

Your
browser

12

Can you find three
different proxy layers?

1. Load balancers in front of Squids
2. Squid caching HTTP proxies.
3. Load balancers in front of Apaches.

1

2 3

MediaWiki is in front
of the databases, but
why isn’t it a proxy

layer?

STOP
and

THINK

STOP
and

THINK

Review
• Introduced proxies and caching.
• A proxy is an intermediary for handling requests.
• Useful both for caching and load balancing (discussed later).

•Often, many of a service's requests are for a few popular documents.
• Caching allows responses to be saved and repeated for duplicate requests.

•HTTP has built-in support for caching.

13

