
CS-310 Scalable Software Architectures
Lecture 3: Stateless Services,

Proxies, and Caches
Steve Tarzia

1

Last time:
• Showed that web server frameworks let you translate a simple program

into a multi-threaded service with concurrency.
• Introduced HTTP as the most common type of service.
• Client requests a document (specified in path/url)
• Server sends document in the response.

•High-level overview of Wikipedia’s architecture.
• Showed examples of traditional dynamic web code, where HTML is

programmatically generated.

2

Are all workers equal?

• Each request can be handled by one of
several possible “worker” threads.
•Does it matter which is chosen?

• It depends on how the app code is
written!

3

STOP
and

THINK

Stateless and Stateful worker threads
• A stateless thread/process/service remembers nothing from past

requests.
• Behavior is determined entirely by two things:

〈input request, request handling code〉.
• Different copies of the service are running the same code, so they will give

the exact same response for a given request.
• Has no local state.

• A stateful thread (or service) changes over time, as a side effect of
handling requests.
• Persistent, global variables are modified by the request processing code.

4

state == memory

We’ll see later that state is pushed up to
client or down to a database.

Stateless code has no long-term “memory”
• It’s almost a “pure function” in programming language terminology.
•Output is not affected by previous inputs.
•We do not say “output is determined entirely by the current input,”

because we allow nondeterministic (random) behavior.
• Eg:
• float cosine(float x)
• int sum(int a, int b)
• List sort(List myList)
• List<T> listAppend(List<T> myList, T newItem)
• float generateRandomNumber()

5

Real random number generators actually do
keep some state, but ideally they would not.

Stateful code has side effects (long-term memory)
• It’s like an object or a code that changes global variables.
• Object-oriented mutator:

Class Counter {
private int count;
public Counter() {

count = 0;
}
public void increment() {

count++;
}

}
• Imperative code changing globals:

int count;

void increment() {
count++;

}

6

Side note on OOP
•What are the main purposes of object-oriented programming?
• You probably learned:
• Inheritance:
• This allows strong typing without losing abstraction.
• Creates generic, abstract interfaces, enabling abstraction.

• Modeling real-world concepts.
• Animal à Mammal à Cow!)

• But another major OOP benefit is:
• Grouping sets of related state (memory/variables).
• Well-defined, limited side effects.
• A class defines a set of member functions whose side-effects are limited to a

small set of variables (the object’s data members).

STOP
and

THINK

Horizontally scaling Stateful vs Stateless code
• Let’s say we want to run many copies of our service code in parallel to

handle lots of requests (horizontal scaling).
• Stateless code (has “no memory”):
• All copies will give same response,

it does not matter which copy processes a given request.
• Parallelism is trivially easy!

• Stateful code (does have “memory”):
• Since different copies handled different past requests, their state differs, and

they may give a different response to the exact same request.
• Related requests (from the same client) must go to same handler.

Stateful
example: SMTP
• The text at right shows a series

of 6 requests and responses sent
from an email client to an email
server.
• The result is a single new email.
• Server must remember

information from the previous
requests to finally build the email
message.
• If we were running the email

server code in parallel on many
machines, then all these requests
must be handled by the same
server to complete the task.

C: HELO relay.example.com
S: 250 smtp.example.com, I am glad to meet
you
C: MAIL FROM:<bob@example.com>
S: 250 Ok

C: RCPT TO:<alice@example.com>
S: 250 Ok
C: RCPT TO:<theboss@example.com>
S: 250 Ok
C: DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: From: "Bob Example" bob@example.com
C: To: Alice Example alice@example.com
C: Cc: theboss@example.com
C: Date: Tue, 15 January 2008 16:02:43 -0500
C: Subject: Test message
C:
C: Hello Alice.
C: This is a test message with 5 header
fields
C: and five lines in the message body.
C: Your friend,
C: Bob
C: .
S: 250 Ok: queued as 12345

C: means client request
S: means server response

mailto:bob@example.com
mailto:alice@example.com

Stateless example: HTTP

From
https://www.ntu.edu.sg/home/ehchua/pro
gramming/webprogramming/HTTP_Basics.
html

(optional for GET)

Response:

Request:

One big request that
is self-sufficient
(independent)

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

Should MediaWiki (Wikipedia) be stateful or stateless?
Tasks:
•Get corresponding

wiki text from DB.
• Translate wiki text to

HTML.
• Add wrapping

content and banners.
• Add user-specific

page header, based
on cookies in request.

Recall:
• Stateless applications do not remember

anything from previous requests.
• Each request can be handled independently

based exclusively on the input request.
• Can be trivially parallelized because handling a

request has no side effects in the handler.

•Which of these tasks have side effects?
• Are there other MediaWiki tasks that

have side effect?

11

STOP
and

THINK

Page Edit might have side effects in MediaWiki
•Most visitors just read Wikipedia pages, but some also edit pages.
• Edits are sent as HTTP POST requests to the same MediaWiki app.
• Clearly, these edits should affect the results of future page fetches.
• If I edit a page on server A, then a user requesting the same page from server

A or server B should see my edits.
• The edits should have system-wide side effects.
• Can MediaWiki still be stateless?

Yes! Databases separate system state from stateless request handlers.
• The edit’s results are stored by MediaWiki in an external, shared DB.
• The DB must be queried for every page fetch.
• Thus the PHP code in MediaWiki can remain stateless and easily parallelized.

12

Push state down to a
database.

STOP
and

THINK

Sign In might have side effects in MediaWiki
• After signing in, all later response HTML will have a different page header,

including your username, notifications, etc.
• Handling a “sign in” request has a side effect on later page fetches.
• How can we avoid keeping this “sign in” state in MediaWiki?

Cookies solve this problem
• Sign-in leads to a cookie being stored in the DB and returned to the client

browser. So, client and DB keep the sign-in state.
• Client sends the cookie as an HTTP header in all future requests.
• Cookie is provided as an input to MediaWiki, and MediaWiki checks the

cookie against cookies stored in the shared database.
• Even better, signed cookies can be verified without a backend database.

13

Push state up to
the client

STOP
and

THINK

Response to sign-in request gives user a cookie
• Cookies are how web applications track state, often to track user identity.
• If username and password were correct, server will return a cookie in the response:

• Response tells the browser to redirect to http://somewebsite.com/account, but it also
gives the browser a cookie to remember.
• Browser will include the cookie in all future HTTP requests to somewebsite.com:

• Server getting this request can use the cookie to determine which user it came from!

HTTP/1.1 302 Found
Location: http://somewebsite.com/account
Set-Cookie: someweb-id=kfj203d14t9s

GET /account HTTP/1.1
Host: somewebsite.com
Referer: http://somewebsite.com/bin/login
Cookie: someweb-id=kfj203d14t9s
…

Is HTTP with
cookies still

stateless? STOP
and

THINK

How does statelessness help?

MediaWiki

• 200 instances of MediaWiki can
be run behind a load balancer.
• Load balancing is done both by

DNS and by efficient, simple
software proxies.

• Any of the 200 instances can
handle any request.
• Each of those 200 machines also

has many CPU cores and dozens
of software threads.

• Coordination only happens by
writing to shared databases.

15

chess.com WebApp

Design Example: A chess website
•We need to track the state of many games being played at once.
• We want to render pages like this: https://chess.com/game/23

• Simplest design is to store game state in memory (eg., in a dictionary)

•How can we
scale this app?
• Vertically?
• Horizontally?

GET /game/1

User1 User2 User3 User4 User5 User6

One
Machine

STOP
and

THINK

https://chess.com/game/23

chess.com WebAppchess.com WebAppchess.com WebApp

Horizontal scaling of chess app
•Our first attempt will run the same simple code on multiple servers.
• Each game runs on one of many servers. Each server handles a

fraction of games.
• Can you see any problems

with this scaling approach?
• User must connect to exact

same server to continue
their game. How to direct user?
• If a server fails, 1/n games

are lost (or at least interrupted).
• These are stateful web apps.

User1 User2 User3 User4 User5 User6
User1 User2 User3 User4 User5 User6

User1 User2 User3 User4 User5 User6

STOP
and

THINK

Stateless design of horizontally-scaled chess app
• Push all the game state to a central, shared database.
• This is equivalent to MediaWiki pushing all article data to a DB.
• User can connect to any one

of the chess webapp instances
to play any game.
• Some kind of load balancer

directs user to a server instance
(more on this in later lectures).
• Any problems with this approach?
• The DB is a central, shared resource

that will limit scalability.

STOP
and

THINK

chess.com WebAppchess.com WebAppchess.com WebApp

User1 User2 User3 User4 User5 User6
User1 User2 User3 User4 User5 User6

User1 User2 User3 User4 User5 User6

Game Database
STOP
and

THINK

"load balancer" connects users to any app instance

Review
•Defined stateless and stateful services.
• Showed how databases and cookies make MediaWiki stateless and

scalable.
• In other words, we achieved parallelism and distributed execution

while avoiding difficult coordination problems. Just push away all
shared state. Push state up to client and/or down to database.
• First lesson of scalability: Don’t share!
Unsolved problems:
•How to direct users to an instance of a service (load balancing)?
•How to avoid a performance bottleneck in the database?

19

