(CS-310 Scalable Software Architectures
Lecture 3: Stateless Services,

Proxies, and Caches

Steve Tarzia

[.ast time:

* Showed that web server frameworks let you translate a simple program
into a multi-threaded service with concurrency.

* Introduced HTTP as the most common type of service.
* Client requests a document (specified in path/url)
* Server sends document in the response.

* High-level overview of Wikipedia’s architecture.

* Showed examples of traditional dynamic web code, where HTML is
programmatically generated.

Are all workers equal?

, wqest A Cosgome
‘ ——————_ *Fach request can be handled by one of
«e‘\wg_) cespme several possible “worker” threads.
‘ OQ“ / — ‘1““@‘ * Does it matter which 1s chosen?
STOP
THINK
E !Aﬂ’i B E * [t depends on how the app code is
itten!
1es & progean written!
LOL\ Yheead s

me. macline /0S

Stateless and Stateful worker threads

* A stateless thread/process/service remembers nothing from past
requests.

* Behavior 1s determined entirely by two things:
(input request, request handling code).

* Different copies of the service are running the same code, so they will give
the exact same response for a given request.

o
Has no 10_()21 state. We’ll see later that state 1s pushed up to
client or down to a database.

* A stateful thread (or service) changes over time, as a side effect of
handling requests.
* Persistent, global variables are modified by the request processing code.

Stateless code has no long-term “memory”

* [t’s almost a “pure function” in programming language terminology.
* Output is not affected by previous inputs.

* We do not say “output is determined entirely by the current input,”
because we allow nondeterministic (random) behavior,

* Ho:
e float cosine(float x)
*1nt sum(int a, 1int b)
* List sort(List myList)
* Li1st<T> laistAppend (List<T> myList, T newltem)
* float generateRandomNumber ()

Real random number generators actually do
keep some state, but ideally they would not.

Stateful code has side effects (long-term memory)

* It’s like an object or a code that changes global variables.

* Object-oriented mutator:
Class Counter {
private int count;

public Counter () {
count = 0;

}

public void increment () {
count++;

}
}

* Imperative code changing globals:
int count;

vold increment ()
count++;

}

Side note on OOP

* What are the main purposes of object-oriented programming?

* You probably learned:
* Inheritance:
* This allows strong typing without losing abstraction.
* Creates generic, abstract interfaces, enabling abstraction.

* Modeling real-world concepts.
* Animal 2 Mammal = Cow!)

* But another major OOP benefit is:
* Grouping sets of related state (memory/variables).
* Well-defined, limited side effects.

e A class defines a set of member functions whose side-effects are limited to a
small set of variables (the object’s data members).

Horizontally scaling Statetul vs Stateless code

* Let’s say we want to run many copies of our service code in parallel to
handle lots of requests (horizontal scaling).

* Stateless code (has “no memory™):

* All copies will give same response,
it does not matter which copy processes a given request.

* Parallelism is trivially easy!

* Stateful code (does have “memory”™):

* Since different copies handled different past requests, their state differs, and
they may give a different response to the exact same request.

* Related requests (from the same client) must go to same handler.

C: means client request

Stﬂt@ ful S: means server response

example: SMTP

* The text at right shows a series
of 6 requests and responses sent
from an email client to an email
Servet.

* The result 1s a single new email.

* Server must remember
information from the previous
requests to finally build the email
message.

* If we were running the email
server code in parallel on many
machines, then all these requests
must be handled by the same
server to complete the task.

C: HELO relay.example.com
St

you

@

0 QOO0 »n O 1 OO 1 O »

250 smtp.example.com, I am glad to meet

: MAIL FROM:<bob@example.com>

ie

250 Ok

: RCPT TO:<alicelexample.com>

250 Ok

: RCPT TO:<thebosslexample.com>

250 Ok
DATA
354 EFnd data with <CR>}LF>.<CR><LF>

From: "Bob Example" bobUlexample.com
To: Alice Example alicelexample.com

: Cc: thebosslexample.com

Date: Tue, 15 January 2008 16:02:43
Subject: Test message

: Hello Alice.

This is a test message with 5 header
lds
and five lines in the message body.

: Your friend,
: Bob

250 Ok: queued as 12345

-0500

mailto:bob@example.com
mailto:alice@example.com

Stateless example: HT'TP

. GET /doc/test.html HTTP/1.1 > Request Line 3
RequeSt' Host: www.test101.com A
Accept: image/gif, image/jpeg, */* Request
Accept-Langu:flge: en-us . Request Headers > Message
Accept-Encoding: gzip, deflate Header
One big request that User-Agent: Mozilla/4.0
is self-sufficient Content-Length: 35 / _ J
: - > Ablank line separates header & body
(independent)
bookId=12345&author=Tan+Ah+Teck | Request Message Body
(optional for GET)
. HTTP/1.1 200 OK > Status Line 3\
Response' Date: Sun, 08 Feb xxxx 01:11:12 GMT)
Server: Apache/1.3.29 (Win32) Response
Last-Modified: Sat, 07 Feb xxxx Message
ETag: "0-23-4024c3a5" Response Headers > Header
Accept-Ranges: bytes
Content-Length: 35
Connection: close
Content-Type: text/html J J
. > A blank line separates header & body
§E§Em1xvgc%§rg§?a;ﬁngg?i-igfhlgl}’méag)lré)s <h1>My Home page(/hl) | } Response Message BOdy

html

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

11

Should MediaWiki (Wikipedia) be stateful or stateless?
Tasks: Recall:

* Get corresponding 7 ® Stateless applications do not remember

wiki text from DB. anything from previous requests.
e Translate wiki text to * Each request can be handled independently
HTMI. based exclusively on the input request.

* Can be trivially parallelized because handling a

* Add wrapping request has no side effects in the handler.
content and banners.

* Add user-specific > ¢ \Which of these tasks have side effects?
page header, based

on cookies in request e Are there other MediaWiki tasks that
1) have side effect? THINK

12

Page Edit might have side effects in MediaWiki

* Most visitors just read Wikipedia pages, but some also edit pages.
* Edits are sent as HT'TP POST requests to the same MediaWiki app.
* Clearly, these edits should affect the results of future page fetches.

* If I edit a page on server A, then a user requesting the same page from server

A or server B should see my edits.
STOP Push state down to a
Y database
THINK :

Yes! Databases separate system state from stateless request handlers.

* The edit’s results are stored by MediaWiki in an external, shared DB.

* The edits should have system-wide side effects.
* Can MediaWiki still be stateless?

* The DB must be queried for every page fetch.
* Thus the PHP code in MediaWiki can remain stateless and easily parallelized.

13

Sign In might have side etfects in MediaWiki

* After signing in, all later response HTML will have a different page header,
including your username, notifications, etc.

* Handling a “sign in” request has a side effect on later page fetches.
* How can we avoid keeping this “sign 1n” state in MediaWiki?

Push state up to
Cookies solve this problem the client

* Sign-in leads to a cookie being stored in the DB and returned to the client
browser. So, client and DB keep the sign-in state.

* Client sends the cookie as an HT TP header in all future requests.

* Cookie is provided as an input to MediaWiki, and MediaWiki checks the
cookie against cookies stored in the shared database.

* BEven better, signed cookies can be verified without a backend database.

Response to sign—in request gives user a cookie

* Cookies are how web applications track state, often to track user identity.

* If username and password were correct, server will return a cookie in the response:

HTTP/1.1 302 Found
< Location: http://somewebsite.com/account
Set-Cookie: someweb-i1d=kfj203d14t9s

¢ RCSpOIlSC tells the browser to redirect to http://somewebsite.com/account, but it also
gives the browser a cookie to remember.

* Browser will include the cookie in all future HT'TP requests to somewebsite.com:

GET /account HTTP/1.1
Is HTTP with Host: somewebsite.com
cookies still Referer: http://somewebsite.com/bin/login —m——w>s

stateless? [STOP Cookie: someweb-1d=kfj203d14t9s

and

THINK

* Server getting this request can use the cookie to determine which user it came from!

15

Databases

How does statelessness help?

Master 5 slaves

* 200 instances of MediaWiki can ‘aj =F ="

be run behind a load balancer. MediaWik) e
* Load balancing is done both by e q | &

DNS and by efficient, simple ____Apaches ’é‘”

software proxies.

QR

Yo
C’,C’,C’,C’,C’) 20 Apache-Core/ex-ES

GO0
QOOOOOQQQQQQQQQ)
QOO
QOO
clecicicIoIICICICIOCICICNC)
QOO QOO QOO
QOO
QOOOOOQQQQQQQQR)
ciecicicICCICICICCACICICIC)
090000000V

149 Apache-Core

* Any of the 200 instances can ~ <T>
handle any request. ©

e Hach of those 200 machines also <—

Media files
has many CPU cores and dozens
of software threads.

T

_{

<

—
/Load-BaIancer\\

* Coordination only happens by
writing to shared databases. B STy, scalers

3 mass storage Image \
servers files 6 scalers

-

Design Example: A chess website

* We need to track the state of many games being played at once.
* We want to render pages like this: https://chess.com/game/23

* Simplest design is to store game state in memory (eg., in a dictionary)

Userl User2 User3 User4 Usetb User6

* How can we
scale this app?

* Vertically?
* Horizontally?

GET /game/1

One
>—JMﬂdﬂne

STOP

and

THINK

chess.com WebApp

https://chess.com/game/23

Horizontal scaling of chess app

* Our first attempt will run the same simple code on multiple servers.

* Each game runs on one of many servers. Fach server handles a
fraction of games.

| | | | | |
| | | | | |
® Caﬂ YOU_ See any problems L‘— Userl | User2 | User3d |4 User4 Userb User6

with this scaling approach? (ks

and

THINK

e User must connect to exact
same server to continue

........

their game. How to direct user?

.........

.........

.........

* If a server fails, 1/n games
are lost (or at least interrupted).

.........

i
)
a

=0

¢ =
: £
. 2E B

* These are stateful web apps.

chess.com WebApp | | chess.com WebApp | | chess.com WebApp

STOP

Stateless design of horizontally-scaled chess app (@&

THINK

* Push all the game state to a central, shared database.

* This 1s equivalent to MediaWiki pushing all article data to a DB.

* User can connect to any one LL = u u _ § i
of the chess webapp instances | Userl | User2 || User3 | Usert |4 User5 | User§
to play aﬂy game' \\ "load balancer" connects users to any app instance

* Some kind of load balancer
dif@CtS user to a server iﬂStaﬂce chess.com WebApp | | chess.com WebApp | | chess.com WebApp
(more on this in later lectures).

Game Database
X L)
|| Wie| Egs

CELN T
5 AAE [iali4

STOP

* Any problems with this approach?

* The DB i1s a central, shared resource s

that will limit scalability.

i
E% o
oE H =i A AR

&

13- L3
e

£
-

19

Review

e Defined stateless and stateful services.

 Showed how databases and cookies make MediaWiki stateless and
scalable.

* In other words, we achieved parallelism and distributed execution
while avoiding difficult coordination problems. Just push away all
shared state. Push state up to client and/or down to database.

* First lesson of scalability: Don’t share!

Unsolved problems:

* How to direct users to an instance of a service (load balancing)?

* How to avoid a performance bottleneck in the database?

