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Last Time: Types of  Scaling
• A software service is a program that runs continuously, giving 

responses to requests.
• Scalability is the ability of  a service to grow to handle many 

concurrent users (ideally an arbitrarily large number).
• Two approaches to scaling that are useful in different scenarios:
• Vertical scaling is upgrading your machine(s).
• The simplest and most efficient way of  scaling… but there is a ceiling.

•Horizontal scaling is adding more machines.
• Coordinating a cluster of  machines is complicated, but it's necessary for 

global scale and massive throughput.



How are services different than 
programs?

STOP
and

THINK
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Basic Service Definition
• In the theory of  computation, a computer program (Turing Machine)  

takes a symbolic input and returns a symbolic output.  Then it stops.
• Similarly, a computer service receives requests and returns a 

response for each request.
•However, a service can handle many concurrent, independent requests, 

which may be from different users.
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From a Program to a Service
• A simple computer program can be 

translated into a service by:
• Listening to requests that arrive 

from the network.
• Running many copies of  the 

program concurrently
(using the OS features called 
threads or processes).
• Using queues to store unhandled 

requests and unsent responses.
• Queues allow competing threads 

to share a single network “socket” 
(one IP address and port).
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Service thread
• The program on each thread runs an 

infinite loop:

while(true){
request = requestQ.pop();
response = doWork(request);
responseQ.push(response);

}

• pop() waits if  the queue is empty.
• push() might wait if  queue is too full.
• A thread that waits is also said to block.
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Concurrency
•Many requests can be processed at the 

same time (concurrently).
• This allows many CPU cores to be 

used in parallel.
• The threaded design is also helpful 

even if  there is only one CPU core, 
because the app may block to request 
data from disk or over the network.
• This is called IO (input/output).

•While one thread is waiting for the IO 
to complete, another can use the CPU.  
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Web/HTTP server frameworks
•Web/HTTP server software provides 

this basic framework.
• For example:
• Java: Jetty, Tomcat
• Python: Flask, Django
• Javascript: Node.js
• Static files: Apache httpd, Nginx

Just plug in the app code.
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Hyper Text Transport Protocol (HTTP)

•HTTP is a client-server data exchange protocol
• It was invented for web browsers to fetch pages from webservers

• Request specifies:
• A human-readable header with: URL, method, (plus some optional headers)
• An optional body, storing raw data (bytes).

• Response includes:
• A human-readable header with response code, (plus some optional headers)
• An optional body



Request:

From 
https://www.ntu.edu.sg/home/ehchua/pro
gramming/webprogramming/HTTP_Basics.
html

(optional for GET)

Response:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html


Wikipedia architecture
• Main application is MediaWiki
• 70% PHP, 30% JavaScript
• Databases are MariaDB (SQL)

• https://meta.m.wikimedia.org/wi
ki/Wikimedia_servers
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Key parts

Squid: Caching HTTP proxy on 
frontend.
Apache httpd: web servers 
running the main application 
(MediaWiki)
SQL databases for wiki text, etc.
File servers for images.
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Key parts

HTTP cache MediaWiki

Your 
browser

13



Caching layer is optional!
•We’ll come back 

to caching in the 
next lecture MediaWiki

Your
web 

browser
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MediaWiki application
• Runs PHP code in Apache Httpd web framework.
• Input request:
• An HTTP request from the browser.
• For example, GET /wiki/Embioptera

•Output response:
• An HTTP response understandable to the browser.
• Usually an HTML document, sometimes an image, etc.
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MediaWiki’s main task is to generate article HTML
How?
•Get corresponding 

wiki text from DB.
• Translate wiki text to 

HTML.
• Add wrapping 

content and banners.
• Add user-specific 

page header, based on 
cookies in request.
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Code walkthroughs
• (Bitbucket links will not work for students, refer to video)
• https://stevetarzia.com/

• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/index.php?mode=view&spa=0&at=master
&fileviewer=file-view-default

• https://stevetarzia.com/xmas/
• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/xmas/index.php?mode=view&spa=0&at=

master&fileviewer=file-view-default
• https://stevetarzia.com/listen/

• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/listen/index.php?mode=view&spa=0&at=
master&fileviewer=file-view-default

• https://gunmemorial.org/donate
• https://bitbucket.org/starzia/gunmemorial/src/master/victim-

portal/src/main/webapp/donate.jsp?mode=view&spa=0&at=master&fileviewer=file-view-default
• https://gunmemorial.org/sitemap.txt
• https://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020

• https://bitbucket.org/starzia/gunmemorial/src/master/victim-
portal/src/main/java/org/gunmemorial/web/servlet/SiteMapServlet.java?mode=view&spa=0&at=master
&fileviewer=file-view-default

https://stevetarzia.com/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://stevetarzia.com/xmas/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/xmas/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://stevetarzia.com/listen/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/listen/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://gunmemorial.org/donate
https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/webapp/donate.jsp?mode=view&spa=0&at=master&fileviewer=file-view-default
https://gunmemorial.org/sitemap.txt
https://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020
https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/java/org/gunmemorial/web/servlet/SiteMapServlet.java?mode=view&spa=0&at=master&fileviewer=file-view-default


Recap
• Showed that web server frameworks let you translate a simple program 

into a multi-threaded service with concurrency.
• Introduced HTTP as the most common type of  service.
• Client requests a document (specified in path/url)
• Server sends document in the response.

•High-level overview of  Wikipedia’s architecture.

Open questions:
•What’s caching and why is it possible?
•What’s the purpose of  the database and how to make it scalable?


