
CS-310 Scalable Software Architectures
Lecture 2:

HTTP and Web Servers
Steve Tarzia

1

Last Time: Types of Scaling
• A software service is a program that runs continuously, giving

responses to requests.
• Scalability is the ability of a service to grow to handle many

concurrent users (ideally an arbitrarily large number).
• Two approaches to scaling that are useful in different scenarios:
• Vertical scaling is upgrading your machine(s).
• The simplest and most efficient way of scaling… but there is a ceiling.

•Horizontal scaling is adding more machines.
• Coordinating a cluster of machines is complicated, but it's necessary for

global scale and massive throughput.

How are services different than
programs?

STOP
and

THINK

3

Basic Service Definition
• In the theory of computation, a computer program (Turing Machine)

takes a symbolic input and returns a symbolic output. Then it stops.
• Similarly, a computer service receives requests and returns a

response for each request.
•However, a service can handle many concurrent, independent requests,

which may be from different users.

4

From a Program to a Service
• A simple computer program can be

translated into a service by:
• Listening to requests that arrive

from the network.
• Running many copies of the

program concurrently
(using the OS features called
threads or processes).
• Using queues to store unhandled

requests and unsent responses.
• Queues allow competing threads

to share a single network “socket”
(one IP address and port).

5Network

Service thread
• The program on each thread runs an

infinite loop:

while(true){
request = requestQ.pop();
response = doWork(request);
responseQ.push(response);

}

• pop() waits if the queue is empty.
• push() might wait if queue is too full.
• A thread that waits is also said to block.

6

pop
push

Concurrency
•Many requests can be processed at the

same time (concurrently).
• This allows many CPU cores to be

used in parallel.
• The threaded design is also helpful

even if there is only one CPU core,
because the app may block to request
data from disk or over the network.
• This is called IO (input/output).

•While one thread is waiting for the IO
to complete, another can use the CPU.

7

Web/HTTP server frameworks
•Web/HTTP server software provides

this basic framework.
• For example:
• Java: Jetty, Tomcat
• Python: Flask, Django
• Javascript: Node.js
• Static files: Apache httpd, Nginx

Just plug in the app code.

8

Hyper Text Transport Protocol (HTTP)

•HTTP is a client-server data exchange protocol
• It was invented for web browsers to fetch pages from webservers

• Request specifies:
• A human-readable header with: URL, method, (plus some optional headers)
• An optional body, storing raw data (bytes).

• Response includes:
• A human-readable header with response code, (plus some optional headers)
• An optional body

Request:

From
https://www.ntu.edu.sg/home/ehchua/pro
gramming/webprogramming/HTTP_Basics.
html

(optional for GET)

Response:

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

Wikipedia architecture
• Main application is MediaWiki
• 70% PHP, 30% JavaScript
• Databases are MariaDB (SQL)

• https://meta.m.wikimedia.org/wi
ki/Wikimedia_servers

11

https://meta.m.wikimedia.org/wiki/Wikimedia_servers

Key parts

Squid: Caching HTTP proxy on
frontend.
Apache httpd: web servers
running the main application
(MediaWiki)
SQL databases for wiki text, etc.
File servers for images.

12

Key parts

HTTP cache MediaWiki

Your
browser

13

Caching layer is optional!
•We’ll come back

to caching in the
next lecture MediaWiki

Your
web

browser

14

MediaWiki application
• Runs PHP code in Apache Httpd web framework.
• Input request:
• An HTTP request from the browser.
• For example, GET /wiki/Embioptera

•Output response:
• An HTTP response understandable to the browser.
• Usually an HTML document, sometimes an image, etc.

15

MediaWiki’s main task is to generate article HTML
How?
•Get corresponding

wiki text from DB.
• Translate wiki text to

HTML.
• Add wrapping

content and banners.
• Add user-specific

page header, based on
cookies in request.

16

MediaWiki’s main task is to generate article HTML
How?
•Get corresponding

wiki text from DB.
• Translate wiki text to

HTML.
• Add wrapping

content and banners.
• Add user-specific

page header, based on
cookies in request.

17

MediaWiki’s main task is to generate article HTML
How?
•Get corresponding

wiki text from DB.
• Translate wiki text to

HTML.
• Add wrapping

content and banners.
• Add user-specific

page header, based on
cookies in request.

18

MediaWiki’s main task is to generate article HTML
How?
•Get corresponding

wiki text from DB.
• Translate wiki text to

HTML.
• Add wrapping

content and banners.
• Add user-specific

page header, based on
cookies in request.

19

Code walkthroughs
• (Bitbucket links will not work for students, refer to video)
• https://stevetarzia.com/

• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/index.php?mode=view&spa=0&at=master
&fileviewer=file-view-default

• https://stevetarzia.com/xmas/
• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/xmas/index.php?mode=view&spa=0&at=

master&fileviewer=file-view-default
• https://stevetarzia.com/listen/

• https://bitbucket.org/starzia/www.stevetarzia.com/src/master/listen/index.php?mode=view&spa=0&at=
master&fileviewer=file-view-default

• https://gunmemorial.org/donate
• https://bitbucket.org/starzia/gunmemorial/src/master/victim-

portal/src/main/webapp/donate.jsp?mode=view&spa=0&at=master&fileviewer=file-view-default
• https://gunmemorial.org/sitemap.txt
• https://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020

• https://bitbucket.org/starzia/gunmemorial/src/master/victim-
portal/src/main/java/org/gunmemorial/web/servlet/SiteMapServlet.java?mode=view&spa=0&at=master
&fileviewer=file-view-default

https://stevetarzia.com/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://stevetarzia.com/xmas/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/xmas/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://stevetarzia.com/listen/
https://bitbucket.org/starzia/www.stevetarzia.com/src/master/listen/index.php?mode=view&spa=0&at=master&fileviewer=file-view-default
https://gunmemorial.org/donate
https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/webapp/donate.jsp?mode=view&spa=0&at=master&fileviewer=file-view-default
https://gunmemorial.org/sitemap.txt
https://gunmemorial.org/sitemap.txt?startYear=2020&endYear=2020
https://bitbucket.org/starzia/gunmemorial/src/master/victim-portal/src/main/java/org/gunmemorial/web/servlet/SiteMapServlet.java?mode=view&spa=0&at=master&fileviewer=file-view-default

Recap
• Showed that web server frameworks let you translate a simple program

into a multi-threaded service with concurrency.
• Introduced HTTP as the most common type of service.
• Client requests a document (specified in path/url)
• Server sends document in the response.

•High-level overview of Wikipedia’s architecture.

Open questions:
•What’s caching and why is it possible?
•What’s the purpose of the database and how to make it scalable?

