
1

CS-310 Scalable Software Architectures
Lecture 1:

Types of Scaling
Steve Tarzia

2Gaps in traditional CS curriculum
• In the first few CS classes, students learn all about writing programs.
• These are single-machine, and single-threaded.
• Take an input and produce an output.
• Goals are: correctness, efficiency, (and hopefully clarity or readability).

• After that, most of the upper-level classes are introductions to various
computing research fields.
• These are conceptually difficult, but involve only very small programs.
• This is preparation for a PhD program, not for Software Engineering.

• The Result: most CS graduates are not ready to be productive in even
a junior-level software engineering job.

3What you’ll learn in this class
• In short, you’ll learn to build real, complex, big software services.
• Eg., how to build something like Google Search or Netflix.
• Writing correct & efficient code is only a small part of the challenge.

• Learn about:
• Coordinating multiple apps
• Scaling load
• Big data storage and processing
•Operating in the cloud, and different computing platform models
•… and more.

• The Goal: to learn enough to build your own scalable startup product.
Bypass the “on the job training” or self-study usually required.

4Topics we’ll cover
Control:
• Separation of concerns: Microservices, APIs
• Asynchronicity: Distributed Message Queues, Push Notifications
• Parallel processing: Load balancing, Map Reduce, Spark
• Platforms: Cloud computing, VMs, Containers, Serverless functions
Data Storage:
• Relational vs NoSQL databases
• Caching, Content Delivery Networks (CDNs)

Case Studies:
• Wikipedia, Netflix, Twitter, etc.
• We’ll look at a small piece of each of these companies’ architecture.

5What you will not learn
•Machine learning
•Database internals
• Cloud infrastructure internals (virtualization, SDN)
•Distributed systems details

6What you’ll learn in this class
• In short, you’ll learn to build real, complex, big software services.
• Eg., how to build something like Google Search or Netflix.
• Writing correct & efficient code is only a small part of the challenge.

• Learn about:
• Coordinating multiple apps
• Scaling load
• Big data storage and processing
•Operating in the cloud, and different computing platform models
•… and more.

• The Goal: to learn enough to build your own scalable startup product.
Bypass the “on the job training” or self-study usually required.

7What you will not learn
•Machine learning
•Database internals
• Cloud infrastructure internals (virtualization, SDN)
•Distributed systems details

8Topics we’ll cover
• Service Oriented Architectures (Microservices)
• Relational vs NoSQL databases
• Caching, Content Delivery Networks (CDNs)
•Distributed Message Queues
• Parallel processing with: Map Reduce, Spark

Case Studies:
•Wikipedia, Netflix, Twitter, etc.
•We’ll look at a small piece of each of these companies’ architecture.

9Today's introduction
•Differences between standalone apps and services.
•What do we mean by “scalability” and why is it difficult?

10Traditional view of Software Scalability
In Data Structures & Algorithms we consider a kind of scalability:
• As input data size “n” gets bigger, program should run quickly.
• Complexity analysis lists program runtime as a function of input size.

For example:
•Given a list of size n, mergesort takes O(n log n) time to run.
•Given a hashtable of size n, finding a value takes O(1) time.

• This assumes one problem to solve, one computer, and all operations
having the same cost.

11Services vs Programs
• A service is different than a simple program because it listens for

requests from clients/users, and may handle multiple requests
concurrently.
• External user provides an input (request) and service outputs a

response.
• Requests are usually delivered as messages that arrive over a network.
• The service runs constantly, waiting for requests that it should process.
• Thus, you can’t just run the code on your laptop. You need a machine that is

always powered-on (probably located in a data center or server room).
For example:
• a website, like: https://www.ebay.com/sch/i.html?_nkw=guitar

https://www.ebay.com/sch/i.html?_nkw=guitar

12Defining Service Scalability
• Roughly speaking, a service is scalable if it can easily handle growth in

the number of concurrent users/requests.

Scalability metrics are measures of work throughput:
• Requests/queries per second
• Concurrent users
•Monthly-active users

• So far, we don’t care about the costs to achieve this scale (time per
request or number of machines required), just the scale achieved.

13Scaling Challenges
•Why is it difficult to make services big, even if money ain’t a thang?

• Programs run on one machine, which has limited speed.
• Coordinating multiple machine can be difficult (who does what?)
• Sharing data among multiple machines is difficult (where is the data?

how do we manage competing requests to change the same data?).
•More machines means there is high probability one will fail (die).
• Users can be distributed worldwide (communication latency is high).
• Service components must trust each other but ignore interference

from attackers (authentication).
• Software updates must be deployed without downtime.

STOP
and

THINK

14Vertical Scaling
• Let’s assume that you’re starting with a very light load and you can

handle all the requests on one machine. Suddenly demand increases!
• The easiest approach to scaling is to just buy a faster machine to run

your service.

Vertical scaling makes
your machine(s) bigger
and stronger.
Think “taller.”

Horizontal scaling adds more machines.
Think of them standing side-by-side.

15COMP_ENG 101: What affects computer performance?
Primarily:
•Number of CPU cores.
• Speed of each CPU core.
• (Lack of) competing

processes running on the
same machine.

https://aws.amazon.com/ec2/instance-types/

Perhaps also:
• Amount of memory (RAM).
• Type of disk (SSD vs magnetic).
•Number of disks (parallel access).
• Type of network connectivity.
• Presence of GPUs, TPUs, and other

special-purpose accelerators.

https://aws.amazon.com/ec2/instance-types/

16Parallelism within a machine
• At any given time, you probably have about 100 processes (programs)

"running" on your laptop (which probably has about 4 CPU cores).
• The OS kernel schedules processes, so they take turns using CPU.
•Often, processes block (wait) while doing input/output (IO).
• For example, reading a file from disk, or waiting for a message to arrive from

the network.

•While a process is blocked, another process can take over the CPU.
• A single process can have multiple threads which execute concurrently

while sharing the same memory.
• This is called Shared Memory Parallelism.

17Apache web server example
• At left is the output from the

“top” command, showing
process status on Linux.
• This is a t2.micro virtual machine

with only one CPU core.
• It's running a webserver with at

least 11 separate processes
(httpd.worker).
•While one process is blocked

(meaning busy, eg., waiting to read
data from an HTML file) another
process can handle a different
user’s request.

18Cloud Computing makes scaling easier
• Vertical scaling: change the instance type of a virtual machine.

Eg., upgrade from:
• t3.nano (<2 cores, 0.5GB RAM, remote SSD disk) $.0052/hour …to…
• m5d.24xlarge (96 cores, 386GB RAM, local NVMe SSD disk) $5.424/hour

• Vertical scaling (up or down) just requires a reboot of the VM.

•Horizontal scaling: purchase more VM instances.
• The new instance will be available to use in just a few minutes.

•We call cloud computing resources “elastic” because you can quickly
change the size and quantity of the computing resources you are using.

19Vertical Scaling pros and cons
üEasy to write your programs.
üMost languages have support for

multithreading.
üMost “off the shelf ” software

(commercial or open source) is
written to run on one machine.

Eg.: MySQL, Oracle DB,
Apache, Nginx, Node.js, etc

üModern servers can do a lot of
work in parallel with ~96 cores.

üCan connects hundreds of disks to
a machine before overwhelming
I/O bandwidth.

üAvoids slow communication with
outside machines.

× Cannot handle really huge loads.
× Cannot be scaled quickly in a fine-

grained manner.
Ie., must replace entire machine instead
of just adding one more node.

× Single point of failure.
× Price/performance ratio is poor

for top-of-the-line machines.
×Motherboards with many sockets are

expensive.
× Fastest CPUs are expensive.

• Vertical scaling is not scalable!

20Horizontal Scaling is needed for global apps
• Public Cloud Computing providers can give you lots of machines, but

making good use of them is very difficult.
•Most of this class will address the coordination of execution and data

in horizontally-scaled systems.

21Recap
• A software service is a program that runs continuously, giving

responses to requests.
• Scalability is the ability of a service to grow to handle many

concurrent users (ideally an arbitrarily large number).
• Two approaches to scaling that are useful in different scenarios:
• Vertical scaling is upgrading your machine(s).
• The simplest and most efficient way of scaling… but there is a ceiling.

•Horizontal scaling is adding more machines.
• Coordinating a cluster of machines is complicated, but it's necessary for

global scale and massive throughput.

