
Little, Medium, and Big Data:
Choosing Data Tools for Social Science Research

Stephen P. Tarzia
Northwestern University

September 2017

Abstract—This article provides guidance for social sci-
ence researchers navigating the overwhelming variety of
data analysis tools now available. There is no one-size-
fits-all solution, and it’s important to understand the
capabilities and drawbacks of each option. Big Data is
often defined by the “three V’s” of velocity, volume, and
variety. This article provides some quantitative guidelines
on data velocity and volume to allow researchers to match
their data problems to the appropriate tools

To clarify the meaning of Big Data, I introduce the
terms Little Data and Medium Data to describe two distinct
types of data analysis that are possible with a single
machine. Generally, techniques designed to handle larger
data sets come with drawbacks inherent to parallelism and
decentralization. So, one should not automatically choose
the latest and greatest Big Data tools, but instead choose an
approach that is sized just right for a particular problem.
I provide a simple flowchart in Figure 1 to guide the choice
of computational tools. The article gives researchers a basic
understanding of the performance limitations of a single
computer to recognize instances where data velocity and
volume call for Big Data tools.

I. LITTLE DATA

The simplest research scenarios involve data sets
that are small enough to fit in a single machine’s
random access memory (RAM), and I call this
“Little Data.” In 2017, a top-of-the-line laptop has
16 GB of RAM and most servers can be provisioned
with up to 1.5 TB of RAM. Any of the data residing
in a machine’s RAM can be quickly read or written
by its central processing unit (CPU).1

With Little Data, analysis programs can access
the data files just once to load everything into RAM,
typically as arrays, then proceed to the analysis steps
with all the data readily available. This represents

1This is a slight simplification. CPUs have multiple levels of
memory caching that effectively makes some RAM more quickly
accessible at any given time, but I ignore this effect because such
caching is unpredictable and is generally does not affect program-
mers’ design choices.

a baseline case for computing, and we will see that
data become much more dispersed in the Medium
and Big Data paradigms.

In my past experience as a computational research
consultant, I found that most academic social sci-
ence research problems can be handled with Little
Data tools, particularly if the university provides
access to a shared server with lots of RAM.

Examples of Little Data tools include Excel,
Stata, and Matlab. Programs that researchers write
in general-purpose programming languages like R
or Python most often also use a Little Data ap-
proach, but the following section explains some
ways to expand the scale of your custom-written
programs.

II. MEDIUM DATA

“Medium Data” techniques are needed when a
data set surpasses RAM size. In these cases, most
of the of data must remain in the storage system
during analysis. By “storage” we usually mean the
machine’s hard disk drives, which are much slower
than RAM.2

There are several common strategies for analyz-
ing data larger than RAM size:

Streaming
Streaming involves doing an analysis while scan-

ning through the data file(s). For example, one may
search for instances of a certain keyword in a 10TB
log file by using the grep command on Unix-
based systems, and this will not require much RAM
because the data can be discarded immediately after

2Disks are “slower” than RAM in two ways. There is a greater
delay between requesting a piece of data and receiving it (known as
latency) and fewer data bytes can be transferred in a given time period
(known as throughput). Disks using solid state technology are sig-
nificantly faster than those using rotating magnetic disk technology,
but they are still slower than RAM.

it is read. Streaming can work well for filtering, but
more complex analyses are intractable because cross
references are impossible. In other words, streaming
works when you need to examine all the data once,
but it affords no way to quickly find particular
pieces of data.

File-based indexing

File-based indexing involves splitting the data
into many files and using a file naming convention
or an index file to determine which file holds the
particular data you are interested in. Let’s imagine
that you’re analyzing historical data on stock market
trades. The data could be organized into folders,
one for each year, and within each folder there
could be a file for each company (having a file-
name corresponding to the company’s stock ticker
symbol or another well-known identifier, such as
the CUSIP). Under such a scheme, a program can
quickly determine exactly which of the thousands
of files contains the data of interest.

Relational databases

Relational databases are the ultimate Medium
Data tool because they allow the researcher to index
the data in an arbitrary number of dimensions. You
can think of a relational database as an alternative to
a filesystem. Both are used to store data permanently
on disk. They differ in how data is organized and
found. Filesystems are organized by a hierarchy
of named folders and files, and each file contains
a chunk of data. On the other hand, relational
databases organize data into one or more tables
(having rows and columns). Any of the columns
can be indexed, so you can efficiently retrieve table
cells using a variety of criteria.

Let’s revisit the stock trading data example from
above. A relational database would allow you to
efficiently look up trades for certain years, or com-
panies, or numbers of shares, or prices, or time
of day. By contrast, if you were relying on file-
based indexing you have just the filename to work
with so you could not index along all five of
these dimensions. Explaining all the capabilities of
relational databases is beyond the scope of this
paper, but there are many good books and online
tutorials on the topic.

A downside of relational databases is that they
are less portable than simple files. Unlike files, a
database cannot be easily moved from one system
to another (eg., from Mac to Windows).3 On the
other hand, there are many different types of free
and commercial relational databases and they all
work slightly differently (eg. MySQL, PostgreSQL,
Microsoft SQL Server, Oracle, SQLite). Because
of this variety, there is usually some effort and
expertise required to load a given data set into the
particular relational database. One has to define the
tables, the columns’ data types, the relationships
between the tables, and then load the data from a
simpler format, such as spreadsheets in the comma
separated value (CSV) files.

One can do many kinds of analyses using the
relational database itself, by executing code written
in standard query language (SQL). However, most
researchers will want to use their preferred statistical
analysis program. Fortunately, these can all load
data from a relational database in a similar fashion
as you would load data from a file. The difference is
that you would write queries in the SQL language
to retrieve aggregations or subsets of the data. In
this way, you can quickly access the particular data
you need while leaving most of the data untouched
on disk.

SAS

Unlike other popular statistical analysis programs,
SAS is designed to handle Medium Data problems.
Tables in SAS actually function very much like
relational database tables. They are stored on disk,
and they can be indexed by multiple columns.4.

A very common Medium Data workflow in the
social sciences is to preprocess the full data set with
SAS, export a slice of the data to a file, then load
it into Stata for the final analyses. If the data were
originally loaded into a relational database, then a
simpler workflow could be used. All the analysis
could be done from Stata by using SQL queries to
retrieve the data cells of interest.

3An exception is the SQLite database, which conveniently stores
a relational database in a single portable file.

4http://www2.sas.com/proceedings/sugi29/123-29.pdf
http://www2.sas.com/proceedings/sugi30/008-30.pdf

http://www2.sas.com/proceedings/sugi29/123-29.pdf
http://www2.sas.com/proceedings/sugi30/008-30.pdf

Swapping

If you ignore all the options above and try to
apply Little Data methods to a Medium Data prob-
lem, your machine will experience a shortage of
memory and start swapping. Swapping is a process
by which the operating system (OS) makes “virtual
memory” available to the program by automatically
shuffling data between RAM and disk. Swapping
is generally much less efficient than other Medium
Data approaches; the OS must guess which data to
“evict” to disk without any knowledge of when that
data will be accessed again by the program, and this
leads to more disk activity than is strictly necessary.
Swapping does extend the capacity of Little Data
tools, but analyses that rely on swapping can be
painfully slow.

III. PUSHING THE LIMITS OF MEDIUM DATA

Focusing on and velocity of data, we can think of
Big Data as the set of problems that require reading
or writing data at a faster rate than is possible on a
single machine. It’s much more difficult to program
a distributed system, so it’s worth asking just how
much data processing capacity can we achieve on
a single machine. In other words, how far can we
scale the Medium Data approach?

It’s somewhat tricky to calculate the threshold
between Medium and Big Data. Let’s start by es-
timating the data processing capacity of a single
machine; an upper-bound estimate for this is the
maximum sustained rate at which the CPU can read
or write data from its storage system.

A server or workstation-class CPU in 2017 can
read data from storage using up to 40 PCI Express
3.0 lanes, which limits it to pulling in at most
40 GB5 per second of data.6 We’ll call this the
input/output (IO) rate of the CPU. On the other
hand, the speed of the storage systems can vary
dramatically from one machine to another.

The slowest common storage option would be
a single high-capacity 7200 RPM magnetic disk,
which might transfer about 150 MB per second at
best. Solid-state disks (SSDs) have less capacity
but are about ten times faster. My Macbook Pro’s

5Data measurements in this article are all in bytes, not bits.
6Usually some of these 40 PCI Express lanes will be reserved for

networking and graphics, but we’ll use 40 as an upper bound.

1 TB SSD can sustain 1.5 GB/s. A better choice
for Medium Data work would be a system that is
equipped with some kind of storage array. We can
achieve increased capacity and higher transfer rates
by distributing the data over multiple disks which
can be accessed in parallel. Remember that the CPU
can handle 27 times more data transfer than even the
fastest disk (40 vs. 1.5 GB/s), so it makes sense to
allocate multiple disks per CPU.

Storage arrays come in many different varieties
with different costs, speeds, and capacities. I exam-
ined the following storage arrays:

• One of my personal servers has an array of
eight 7200 RPM 4 TB SATA magnetic disks
configured in Linux as a ZFS pool with two hot
spares. This gives 24 TB of effective capacity
and it achieves about 400 MB/s.

• A university-owned application server con-
nected to two storage arrays, each of which
has 24 Serial Attached SCSI (SAS) magnetic
disks providing 24 TB of storage. There is also
an 11.5 TB array built from SSDs. In my tests,
each of these arrays achieved about 1 GB/s.

• A university-owned database (DB) server that
was carefully optimized for maximum IO rate.
It has eight RAID controller cards connected
to 264 10k RPM SAS magnetic disks with
600 GB capacity each. The total capacity is
around 150 TB and its advertised aggregate
transfer rate is 16 GB/s. I was not able to test
this system, but we can estimate the maximum
throughput a user will experience. Assume that
each of the 8 RAID controllers is responsible
for controlling a one array of 33 disks (and as-
sume two hot spares). This gives at most 18 TB
of capacity and roughly 4.5 GB/s of throughput
(31 × 150 MB/sec). The DB server’s design
demonstrates that hundreds of disks must be
connected to make full use of a CPU’s IO
capacity.

• The university’s Quest High Performance
Linux Cluster, which has a 3.5 PB GPFS par-
allel file system using IBM’s Elastic Storage
Server technology. It’s the fastest system that I
measured, achieving 3.8 GB/s.

The systems are summarized below.

Start

Are the data
too big to
transfer?

Yes

You have
Big Data and you
must work on the

host system.

No
Data size < RAM?

Yes

No

You have
Little Data and you

can use Stata, R,
Matlab, SAS, Python

or whatever.

Will the data
be used many

times?

Yes

No

You have
Medium Data and
you should use SAS

or load it into a
relational database.

You have
Medium Data and
you can use SAS,
streaming, or file-
based indexing.

Must you
process more
than 4 GB/s?

Yes

No

You should consider
Big Data options
like Hadoop and

NoSQL databases.

Fig. 1. A high-level flowchart to help the social sciences researcher choose tools to use for empirical research.

TABLE I
STORAGE PEFORMANCE EXAMPLES

System Capacity per filesystem Throughput
7200 RPM magnetic 8 TB 150 MB/s

Macbook Pro SSD 1 TB 1.5 GB/s
ZFS 24 TB 400 MB/s
App 24 TB 1 GB/s

Database ∼18 TB ∼4.5 GB/s
Quest/GPFS 80 TB 3.8 GB/s

IV. BIG DATA

As a starting point of our discussion, I defined
Big Data as a set of problems that require processing
data at a rate faster than a single machine can han-
dle. Table I suggests that this threshold is currently
about 4 GB/s. Social science research rarely passes
this mark. Empirical academic research is usually
a two-step process of data collection followed by
analysis. Let’s assume that the researcher can wait
up to one week for the analysis to complete. Using
a Medium Data approach on the DB server, an
analysis code could access 2,200 TB of data in one
week. I have never heard of a social science research
project involving data on that scale.

On the other hand, it is possible that the com-
putational capacity of a single machine will be
insufficient to complete a social science researcher’s

analysis within that week-long deadline. In this case,
some form of parallelism will be needed, but we call
this high-performance computing (HPC), not Big
Data. HPC systems, such as those at the United
States’ various national supercomputing facilities,
have lots of memory and CPUs (and sometimes
GPUs) but their ability to read or write data at a
massive scale is usually a secondary design crite-
rion. In fact, most HPC systems (eg., Northwestern
University’s Quest computing cluster) place the
storage arrays in a separate system, apart from the
compute nodes, which significantly limits the data
processing rate.

Big Data problems often involve either processing
massive streams of new data (as in particle physics
experiments), or giving quick answers to queries
involving huge amounts of distributed data (as in
a web search). In both of these cases, the data is so
large that it cannot reasonably be moved. Academic
researchers will only encounter Big Data if they are
granted access to the internal storage systems of
a large organization generating such data. In these
cases, there is little reason to debate what the best
Big Data tools and strategies are; the researcher
will be confined to using whatever tools are already
supported for the organization’s own use of the data.

So let’s say you actually do have Big Data
Every approach to big data involves some kind

of distributed, fault-tolerant storage system. This
can be a distributed file system like the Hadoop
Distributed File System (HDFS), Amazon’s S3,
or Google’s proprietary Colossus (formerly called
GFS). It can also be a distributed NoSQL database
like Cassandra, MongoDB, DynamoDB, BigTable,
or HBase.

To analyze your data you can use a parallel
computing framework like Hadoop MapReduce,
Spark, Pig, or Hive, or you can use an ad-hoc,
divide-and-conquer approach in a general-purpose
programming language like Python or R.

V. CONCLUSION

The various data analysis choices are summarized
in a simplified flow chart in Figure 1. I hope that
the preceding information will allow researchers to
take full advantage of the plethora of robust Little
and Medium Data tools without being unnecessarily
distracted by the buzz surrounding “Big Data.”

APPENDIX: DATA HOSTING COSTS

Researchers, academic administrators, and sup-
port staff are often presented the opportunity to
acquire large research data sets. Aside from the
data licensing costs there are long-term storage
and computational costs associated with large data
sets. To correctly estimate such costs one must be
familiar with the various data storage and processing
options described in this paper.

If the flowchart in Figure 1 says that you’re
dealing with Big Data, then you’ll have to purchase
a cluster of machines, host them somewhere, and
connect them all on a fast network. However, this
would probably only apply if the researcher was
somehow generating a huge quantity of data from
an experiment. It’s generally not possible to license
or acquire data on the scale that requires Big Data
solutions.

In the majority of cases (Little and Medium
Data), the only costs are those associated with
expanding the storage capacity of existing systems.
For example, at Northwestern University this would
mean either purchasing additional GPFS storage
from central IT on for use on the Quest cluster
or purchasing additional hard drives and enclosures

for the application server or DB server. The Serial
Attached SCSI protocol allows 255 disks to be
connected to each physical connector using an edge
expander and up to 65,535 disks through the use
of fanout expanders. So, the only factor limiting
the number of disks you can connect to a single
machine is the data throughput you wish to achieve.
Recall that a CPU is limited to 40 GB/s of PCIe
bandwidth for input/output. The 264 disks already
connected to the DB server are already capable of
saturating that bandwidth:

264 disks× 150MB/s/disk = 38.7GB/s

So, adding more disks to the DB server would hurt
its performance in the worst case scenario, when all
disks are being simultaneously accessed. However,
this is not a very likely scenario, especially if the
majority of the stored data are are simply being
warehoused rather than being actively analyzed.
I do not have the access necessary to determine
the level of input/output load typical of the DB
server, but I’m speculating that it can tolerate further
expansion. If another DB server were required, the
cost of the machine itself would be roughly $2k to
$5k. If a Windows environment is desired then an
additional $882 would be required for a Windows
Server 2016 SE license, plus $3,717 for SQL Server
Standard license (up to 128 GB of RAM).

Next, we’ll estimate the price of two different
storage expansion options for the DB server: a high-
performance and a low-cost option. This pricing
exercise will use hardware similar to what was
already purchased for the DB server’s main and
backup storage (high-performance and low-cost, re-
spectively).

The high-performance storage option has 2.5 inch
SSDs with 1 TB capacity, each costing about $300.
They would be housed in a SuperMicro 88-disk
JBOD chassis, costing about $3,000. If we reserve
16 disks for data redundancy, this leaves 72 TB of
ultra-fast storage for $29,400.

The low-cost storage option has 3.5 inch
7200 RPM SAS magnetic disks with 8 TB capacity,
each costing about $370. They would be housed in
a SuperMicro 45-disk JBOD chassis, costing about
$2,000. If we reserve 8 disks for data redundancy,
this leaves 296 TB of storage for about $18,650.

Either of these storage arrays would occupy 4U of
rack space and consume about 500 watts of power
on average. We’ll add another 500 watts for air
conditioning costs. Assuming a charge of 8 cents
per kilowatt-hour, the annual electricity cost is

1 kW×24
hour
day

×365
day
year

×$0.08/kWh = $700/year

Thus, if we assume full occupancy, the best-case
cost to store data are shown below.

TABLE II
STORAGE COSTS PER TERABYTE

fixed cost / TB annual electricity cost / TB
high performance $408 $9.72

lost cost $63 $2.36

annual cost / TB
NUIT Quest $71

NUIT Research Data Storage $137
AWS S3 standard access $287 + transfer fees

AWS S3 infrequent access $154 + transfer fees
AWS Glacier $49 + transfer fees

These costs do not include any backups because
I have assumed that the data is stored in read-only
files and therefore is not susceptible to user error.
For unique data sets it would be prudent to also
budget for a backup.

	Little Data
	Medium Data
	Pushing the limits of Medium Data
	Big Data
	Conclusion

