
Educational operating system experiments

Sara Salahi and Stephen Tarzia

March 16, 2007

1 Introduction

Teaching the inner-workings of an operating system (OS) is a daunting en-
deavor. Most operating systems are composed of large, complex code that has
taken hundreds of programmer-years to write. OS concepts include the concepts
associated with various subsystems within the OS as well as how those subsys-
tems are interconnected. The complexity of subsystem interconnections within
an OS makes it difficult for instructors to choose a starting point. Many times,
instructors are left with a choice between two unsatisfactory options: 1) teach-
ing one small, but complex subsystem of a real OS or 2) aiming to give their
students a more thorough understanding by having them study a “toy” OS. The
most common choice is to use detailed programming assignments to reinforce
the general principles covered in lectures and reading material. However, kernel
programming can be an inefficient learning method because it involves many
uninteresting implementation details.

We are developing OS experiments covering several topics, using instrumen-
tation tools and prepared scripts and C applications. Our goal is to build in-
tuition in the students through observation of real OS behavior. Our emphasis
is on the aspects of operating systems most relevant to application program-
mers (rather than OS designers). A gray-box Information and Control Layer
(ICL) [1] is a software interface that lets an external user control and gather
information about the state of a closed system. The idea is to allow students
to approach the OS as gray-box researchers: discovering its properties through
careful manipulation and observation. We call this an experimental approach to
OS education, and we believe that it greatly improve students’ understanding
of OS principles. Our approach is applicable to all OS subsystems, but we begin
with the virtual memory system.

Our hypothesis is that OS experimentation is an engaging and effective way
to improve students’ understanding of OS principles. The skills developed in our
experiments are also useful in debugging systems applications; thus, a secondary
goal is to expose students to useful software development practices, both in
performance optimization and debugging. Our final experiments will be tested
on current undergraduate students taking an introductory course in operating
systems. So far, we have found that instrumentation is handled admirably

1



by Sun’s DTrace and that the OS state can be effectively controlled by user
applications.

2 Instrumentation tools

2.1 DTrace

We rely heavily on Sun’s DTrace [2]. This kernel instrumentation tool allows
users to insert probes that monitor and reveal the function calls that take place
within a real open source OS. We use DTrace primarily for kernel function
tracing and for collecting of system call and I/O frequency and timing statistics.

In the Opensolaris Student Guide [7], the authors have made available a
script that uses DTrace to reveal all of the function calls that take place after a
page fault until the page fault handler returns. Our second experiment is based
on this script; the output is made more intuitive and informative through an-
notation of obscure kernel function names and omission of unimportant details.

2.2 prstat and top

In addition to DTrace, Solaris offers several high-level system monitoring tools.
prstat lists active processes in a fashion similar to the Unix top utility. This
real-time data is useful in scheduling and virtual memory experiments.

3 Control mechanisms

3.1 User applications

In one of our experiments the students observe the behavior of two simple C
programs. These are meant to demonstrate certain memory access patterns. In
particular, the superiority of row-wise matrix access to column-wise is shown. In
another experiment we opt to observe the behavior of the complex GNU emacs
text editor.

3.2 Projects and rcapd

Projects are a Solaris feature that allows one to set runtime parameters for a
group of processes [4]. We use it’s resource limiting feature to create a restricted
memory environment in which to run the paging experiments. These resource
limits can be assigned on a per-user basis or at process load-time. Limits are
not enforced by the kernel. Instead, the rcapd daemon periodically enforces the
resource caps.

3.3 Kernel parameters

SunOS allows certain kernel parameters to be modified at runtime. Figure 1
shows those parameters which we consider useful for future experiments. So far

2



parameter description
physmem Reduce amount of system memory to test paging effects.

lotsfree Serves as the initial trigger for system paging to begin.
desfree Specifies the preferred amount of memory to be free at all

times on the system.
minfree Specifies the minimum acceptable memory level. When

memory drops below this number, system biases alloca-
tions toward allocations necessary to successfully complete
pageout operations or to swap processes completely out of
memory. Either allocation denies or blocks other allocation
requests.

throttlefree Specifies the memory level at which locking memory al-
location requests are put to sleep, even if the memory is
sufficient to satisfy the request.

handspreadpages The distance between the first hand and the second hand
(as part of the clock algorithm used to reclaim pages when
memory is low).

rechoose interval Specifies the number of clock ticks before a process is
deemed to have lost all affinity for the last CPU it ran
on.

Figure 1: Solaris kernel parameters

we have not adjusted any of these.

4 Opensolaris source browser

Sun recently released the source code for most of it’s SunOS kernel, the core of
the Solaris operating system. A very good code browser is available online [6].
We have found this resource helpful in our own investigation of SunOS’s virtual
memory functions. In keeping with the gray-box approach, we believe that the
basic principles of OS operation can be understood without parsing the source
code. However, interesting details in the code should be pointed out to students,
and the curious student should be able to browse the source code if desired.

5 Experimental setup

Students will have SSH or local access to a Solaris machine and a repository
of scripts and precompiled binaries to run in each experiment. The students
have a straightforward procedure to follow. Generally they will run experiment
scripts, record the output, vary the state of the system, repeat the experiment
scripts, and answer some questions or provide a general writeup about what

3



they’ve seen. The procedure and results for two virtual memory experiments
are included in the appendices.

As a ”pre-lab” portion to our specific page fault experiments, students should
have been exposed to an introductory level of paging in a classroom setting.
They will be told how much RAM is available and how large the pages are, and
with this knowledge they should be able to calculate the matrix size necessary
for optimizing the performance of the program.

6 Future Work

Additional experiments on scheduling, synchronization, the filesystem, etc. will
be created.

References

[1] A. C. Arpaci-Dusseau , R. H. Arpaci-Dusseau, Information and control in
gray-box systems, In Proc. 18th ACM Symposium on Operating Systems
Principles, October 21-24, 2001.

[2] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumenta-
tion of production systems. In Proc. USENIX Annual Technical Conference,
pages 15-28, June 2004.

[3] Solaris Dynamic Tracing Guide. Sun Microsystems, Inc. 2005.
http://docs.sun.com/app/docs/doc/817-6223. Part No: 817–6223–11

[4] System Administration Guide: Advanced Administration. Sun Microsys-
tems, Inc. 2006. http://docs.sun.com/app/docs/doc/817-0403. Part
No: 817–0403–13

[5] Solaris Tuneable Parameters Reference Manual. Sun Microsystems, Inc.
2006. http://docs.sun.com/app/docs/doc/817-0404. Part No: 817–
0404–13.

[6] Opensolaris source code browser. Sun Microsystems, Inc. 2005.
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/

[7] Introduction to Operating Systems: A Hands-On Approach
Using the OpenSolaris Project. Sun Microsystems, Inc. 2006.
http://opensolaris.org/os/community/edu/curriculum development/.
Part No: 819–5580–10

4



A Experiment 1: Slow matrix access

In this experiment, students discover a matrix access performance bug.

A.1 Student instructions

In this experiment you will use Solaris’s resource capping daemon, rcapd, to
soft-limit the resident size of your programs to 128 MB. Every five seconds,
rcapd checks process memory usage and reclaims pages from processes exceeding
their limit. We call this a soft resource limit because it is not enforced by the
kernel on allocation; a process may temporarily hold more of the resource than
allowed before the capping daemon notices and enforces the policy.

In Solaris, a project defines a resource limitation policy applied collectively
to a set of processes. We have defined the sandbox project with a resident size
cap of 128 MB. A process may be started under the sandbox project like so:
$ newtask -p sandbox [command goes here]

Another useful tool is the time command. This prints the real, user, and
system time for a process after it terminates: $ time [command goes here]

In this experiment you will examine two program that do scalar multipli-
cation on a matrix; i.e. it applies a constant factor to every element of the
matrix.

A.1.1 Procedure

1. Start the system monitor to view real-time process statistics. Observe the
status and memory usage of running processes. In particular, the SIZE
and RES indicate the virtual memory size and resident size (the amount
actually in physical memory), respectively. At top, the size of physical
memory is given:
$ top

2. Run the first scalar multiply implementation, scalar1, with a size 10000
by 1000 matrix:
$ time newtask -p sandbox ./scalar1 100000 1000

3. Run the second implementation, scalar2:
$ time newtask -p sandbox ./scalar2 100000 1000
Let it run for three minutes, then interrupt it with CTRL-C.

The second implementation contains a performance bug. It is not incor-
rect, but because the programmer did not have a good understanding of
the underlying OS, it runs very inefficiently.

4. To better understand scalar2’s behavior, it is a good idea to run some
monitoring tools. Specifically, run top in a second terminal while you
repeat the previous step in the first terminal. You can tap spacebar to
update top’s statistics more frequently.

5



You should have noticed something unusual about scalar2; it remains
asleep during most of its execution. You can also see that its virtual
memory size is 384 MB, much larger than the 128MB cap being enforced.
You should see the process’s resident memory size always increasing and
being periodically truncated down to 128MB by rcapd. These facts indi-
cate that excessive pagefaults may be the source of slowdown.

5. You can use the pfault timeline.d DTrace script to trace the occurrence
of pagefaults during scalar1 and scalar2’s execution.
$ ./pfault timeline.d
Interrupt it with CTRL-C to stop tracing and display the results. You may
want to start tracing after the initial matrix allocation is complete: these
allocation pagefaults are uninteresting.

This should verify our hypothesis that pagefaults were the cause of slow-
down.

6. Run both scalar1 and scalar2 on a square 10000 by 10000 matrix.
$ time newtask -p sandbox ./scalar1 10000 10000
$ time newtask -p sandbox ./scalar2 10000 10000

You may be surprised to find that both implementations run relatively
efficiently on this matrix.

7. Compare scalar1.c and scalar2.c to find the performance bug in scalar2.c.

A.1.2 Discussion

Assuming 128MB physical memory, 4 kB pages, and a 10000 by 1000 matrix
initially allocated but not in physical memory:

1. Was the system idle or busy during your run? How did this affect your
results?

2. What is the fewest number of pagefaults needed to perform scalar multi-
plication?

3. Assuming no competing processes, how many pagefaults will result from
an LRU page replacement policy if column-wise access is used? row-wise?

4. Why does scalar2 experience so many fewer pagefaults for a 10000 by
10000 matrix than for a 100000 by 1000 matrix?
ANSWER: Column-wise access in 10000 by 10000 matrix is fine because
all 10000 pages = 40 MB can fit in physical memory. A 100000 height
column requires 100000 pages = 400MB and thus the top of the column
will be paged out when approaching the bottom of the column .

5. Even if we have an abundance of free physical memory and paging never
occurs, scalar1 will be faster than scalar2. Why is this?
ANSWER: There will be more cache hits in the CPU.

6



Figure 2: Sample output for scalar1 and scalar2

-bash-3.00$ time newtask -p sandbox ./scalar1 100000 1000

Allocating 100000 by 1000 float matrix...

Allocation complete. Sleeping 10 seconds...

Starting scalar multiplication...

0% ---------------- progress ---------------- 100%

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Multiplication complete.

real 1m22.460s

user 0m8.509s

sys 0m3.506s

-bash-3.00$ time newtask -p sandbox ./scalar2 100000 1000

Allocating 100000 by 1000 float matrix...

Allocation complete. Sleeping 10 seconds...

Starting scalar multiplication...

0% ---------------- progress ---------------- 100%

@^C

real 1m35.970s

user 0m7.562s

sys 0m4.585s

Figure 3: Sample pfault timeline.d output for scalar1

scalar1 11920

value ------------- Distribution ------------- count

< 1000 | 0

1000 |@@ 4497

2000 |@@ 4250

3000 | 1

4000 |@@ 5151

5000 |@@ 5842

6000 |@@ 6121

7000 |@@ 4801

8000 | 0

9000 | 0

10000 | 0

11000 | 0

12000 | 2

13000 |@@ 5375

14000 |@@@ 6599

15000 |@@ 5671

16000 |@@@ 6306

17000 |@@ 4461

18000 |@@ 3852

19000 |@@@ 7007

20000 |@@ 5024

21000 |@@@ 6143

22000 |@@ 5006

23000 | 1

24000 | 0

25000 | 0

26000 | 0

27000 | 0

28000 | 0

29000 | 0

30000 | 0

31000 | 0

32000 | 0

33000 | 681

34000 |@@ 5592

35000 |@@ 5631

36000 | 0

7



Figure 4: Sample pfault timeline.d output for scalar1

scalar2 11923

value ------------- Distribution ------------- count

3000 | 0

4000 |@ 2371

5000 | 0

6000 | 53

7000 |@@ 6985

8000 |@@ 7321

9000 |@ 3450

10000 | 0

11000 | 0

12000 | 238

13000 |@@ 6135

14000 |@ 3740

15000 | 0

16000 | 929

17000 |@@ 6429

18000 |@@ 7284

19000 |@ 4151

20000 | 0

21000 |@ 2701

22000 |@@ 6580

23000 |@ 4565

24000 |@ 2938

25000 | 0

26000 | 0

27000 | 0

28000 | 0

29000 | 0

30000 | 0

31000 | 0

32000 |@ 3965

33000 |@@ 6204

34000 |@ 3666

35000 | 0

36000 | 1744

37000 |@@ 7170

38000 |@@ 7161

39000 |@ 3854

40000 | 0

41000 | 0

42000 | 0

43000 | 0

44000 | 1282

45000 |@@ 6988

46000 |@@ 6960

47000 |@@ 7266

48000 |@@ 6927

49000 |@ 4077

50000 | 0

51000 | 0

52000 | 0

53000 | 0

54000 | 0

55000 | 0

56000 | 0

57000 | 985

58000 |@@ 6784

59000 |@@ 6201

60000 | 0

8



A.2 rcapd issues

In order to make page faulting more intuitive for students, we generated a sample
program that – when run with DTrace – displays page fault trends. We hoped
that this sample program would show the students the performance difference (in
terms of page faulting) when accessing a matrix column-wise versus accessing the
same matrix row-wise. In reality, our test machine had too much RAM (3 GB)
to show any instructive page faulting with a single simple program. Therefore,
we ran rcapd while running this program to cap the amount of RAM available
for the matrices at 128 MB. What we found from these trial runs was that rcapd
did not provide a solid run-time cap on the amount of RAM available resulting in
our program acquiring more than 128 MB of RAM and then the rcapd daemon
reclaiming the memory and then our program acquiring more RAM again and
so on. We originally had hoped to model a smaller machine with rcapd; instead
it was more like modelling a competing process. Nonetheless, the results are
instructive.

Also, in a real class laboratory environment, several projects should be de-
fined so each concurrently working student has his/her own 128 MB chunk of
RAM.

9



B Experiment 2: Pagefault call tree

In this experiment we show the call trace for a several page faults. We make
three types of annotations to the call tree: long comments, short comments, and
branch suppression. We aim to instill a high-level understanding by revealing
the low level system functions using DTrace with added comments/explanations.

B.1 Student instructions

B.1.1 Procedure

1. Run the verbose tracing script indicating as a parameter the application
emacs as the target:
$ ./pfault emacs

2. In another terminal, open the emacs text editor application:
$ emacs -nw
The tracing script will print a call tree for the first pagefault occurring in
emacs. You can see that there is a lot going on behind the scenes when a
pagefault occurs. This is why we try to avoid them!

3. Now, repeat the above with the concise, annotated script:
$ ./pfault annotated.d emacs
Observe the output from DTrace as emacs’s memory is allocated.

4. Again, run the experiment script on emacs:
$ ./pfault annotated.d emacs

5. Now run the spell checker in emacs:
<alt-x>ispell<enter>

6. Observe the pagefault that occurs when emacs loads the spell-checking
code.

B.1.2 Discussion

1. How and why are the two pagefaults different?

2. What kinds of variations in each trace can you see in the similar situations,
and what causes these variations?

3. When would you expect the page the be found on the free list?

10



Figure 5: pfault annotated.d output for allocation pagefault

CPU FUNCTION

0 -> pagefault <== fault occurred on address = feffb338

0 -> as_fault <== as_fault() handles faults on a given address space.

0 -> as_segat <== as_segat() walks an AVL tree of segment structures looking for a

segment containing the faulting address. If no such segment is found,

the process is sent a SIGSEGV (segmentation violation) signal.

0 <- as_segat

0 -> segvn_fault <== Segment specific fault handler. First task is to find the page:

0 -> anonmap_alloc <== Allocate an anonymous page: i.e. a non-filesystem pages

0 -> kmem_zalloc <== Kernel allocates zero-filled memory for itself.

0 <- kmem_zalloc

0 -> kmem_zalloc <== Kernel allocates zero-filled memory for itself.

0 <- kmem_zalloc

0 <- anonmap_alloc

0 -> segvn_faultpage <== Now that we have the necessary page attributes, search for each

faulting page.

0 -> page_lookup <== search for page in page cache

0 <- page_lookup

0 -> hat_memload <== Hardware Address Translation layer:

load the page table entry (PTE) for the page.

0 -> x86pte_set <== Create a page table entry.

0 <- x86pte_set

0 <- hat_memload

0 <- segvn_faultpage

0 <- segvn_fault

0 <- as_fault <== Now virtual address feffb338 is mapped to a valid physical page.

The instruction causing the page fault will be retried and

should now complete successfully.

0 <- pagefault

Figure 6: pfault annotated.d output for regular disk-access pagefault

CPU FUNCTION

1 -> pagefault <== fault occurred on address = f92b000

1 -> as_fault <== as_fault() handles faults on a given address space.

1 -> as_segat <== as_segat() walks an AVL tree of segment structures looking for a

segment containing the faulting address. If no such segment is found,

the process is sent a SIGSEGV (segmentation violation) signal.

1 <- as_segat

1 -> segvn_fault <== Segment specific fault handler. First task is to find the page:

1 -> segvn_faultpage <== Now that we have the necessary page attributes, search for each

faulting page.

1 -> page_lookup <== search for page in page cache

1 <- page_lookup

1 -> page_lookup <== search for page in page cache

1 <- page_lookup

1 -> kmem_zalloc <== Kernel allocates zero-filled memory for itself.

1 <- kmem_zalloc

1 -> sdstrategy <== The device driver strategy routine is called.

1 <- sdstrategy

1 -> swtch <== While the page is being read, the thread causing the page fault

blocks via a call to swtch().

1 -> savectx <== Save process context, because another process is going to run.

1 <- savectx

1 -> restorectx <== Restore process context, because this process is going to run again.

1 <- restorectx

1 <- swtch

1 -> hat_memload <== Hardware Address Translation layer:

load the page table entry (PTE) for the page.

1 -> x86pte_set <== Create a page table entry.

1 <- x86pte_set

1 <- hat_memload

1 <- segvn_faultpage

1 <- segvn_fault

1 <- as_fault <== Now virtual address f92b000 is mapped to a valid physical page.

The instruction causing the page fault will be retried and

should now complete successfully.

11


