
Asynchronous Consensus: A Model in TLA+

Stephen Tarzia

January 5, 2007

Abstract

The main goal of this project was to learn the TLA+ specification language
and to start exploring the practical limitations of modeling and simulating
unreliable systems. A TLA+ specification for a naive asynchronous consen-
sus protocol is presented along with the model-checking times for one to eight
processes under crash-free conditions. Model-Checking times increase dras-
tically with added processes, making large-scale model-checking intractable
without further model abstraction. The protocol is broken by adding a crash
action, and preliminary analysis of failure detector modeling is given.

1 Introduction

1.1 Consensus

Consensus is a basic problem in distributed systems. Generally speaking, consensus
is attained when a group (system) of independent entities (processes) negotiates to
reach a unanimous decision. A solution to this problem is an algorithm each process
can follow to ensure that consensus is always reached. We say that a distributed
system is asynchronous if message transmission times and relative processor speeds
are both finite but unbounded. We say that a system is unreliable if process crashes
can occur randomly. A crashed process never changes state or responds to external
events. It has been shown that the consensus problem is unsolvable in unreliable
asynchronous systems [3]. Intuitively, this stems from the inability of a process to
decide whether an unresponsive neighbor has crashed or is just very slow.

1.2 TLA+

TLA+ is a system specification language [5]. Formally, a system is a set of behav-
iors, a behavior is a sequence of states, and a state is an assignment of values to a
set of variables. The primary advantage of specification is that it allows one to use
a model-checker to simulate all possible behaviors of the system and thus identify
any behaviors that reach unexpected states. TLC is the TLA+ model-checker.

A TLA+ code defines a set of variables, a set of actions that modify the variables,
and a set of predicates on the variables. A TLC configuration file completes a system

1



specification by indicating the semantics of the TLA+ code. The configuration
file identifies the initial state predicate, the next state action, and the temporal
predicate. It also has model-checker directives that specify specific values to be
assigned to constants, and predicates to be tested by the model checker.

1.3 Goals

My main task was to model the asynchronous consensus problem in TLA+ and
verify it with the TLC model-checker. This task fits into a larger project on the
design of reliable systems using unrealiable components. One of the goals of this
project is to establish a design methodology for unreliable systems that incorporates
specification and model-checking. My experience modeling consensus algorithms
will be used as a (preliminary) case study in the Science of Design investigation.
Consensus represents perhaps the most basic meaningful algorithm applicable to
unreliable distributed systems.

2 Method

2.1 Specification Design Decisions

Abstraction There are many choices to make when specifying a system. A single
system can be specified innumerable ways using different state representations and
action granularities. Choice of state representation (variables) is somewhat trivial,
having only cosmetic effects (here, the goal should be semantic clarity). Smaller
action granularity increases the search depth (the maximal behavior length) and
the branching factor (the number of possible next states) leading to much larger
behavior search space and consequently longer model-checking time. It will also
take more effort for the designer to write a finer-grained specification. Generally,
there is a balance to strike between accuracy and behavior space size. This is a very
difficult aspect of specification; a composite (multi-step) action can be specified
atomically only if we are certain that interleaving other actions with it will not
lead to an unexpected state. Thus, in the asynchronous consensus specification
atomicity of certain actions was used to reduce behavior space size.

Symmetry Another method of behavior space reduction is the use of symmetry.
This is done using the TLC module’s Permutations function and the configuration
file SYMMETRY directive. Again, care must be taken when using symmetry to ensure
that permutation of a set in a behavior does not change the results. When sym-
metry on a set is invoked, states that differ only by permutation of that set are
considered redundant; thus, the behavior space size is reduced. In the asynchronous
consensus specification, symmetry was invoked on the processes and on the decision
domain. We can be sure that this symmetry is permissible because the specification
never references a particular process or decision value (it uses only existential and
universal quantification). While symmetry does dramatically reduce the number of
states considered, there is some overhead associated with the symmetry checking.

2



Therefore, it is possible that careless use of symmetry can actually increase model-
checking run-time.
Symmetry reduced the number of initial states to precisely the number of processes
in the system; there is one state for each possible number of processes that have
the same candidate value (pInitialValue[p]) as the coordinator.

Problem simplification The third method of behavior space reduction is prob-
lem simplification. A binary decision domain of attack, retreat was chosen rather
than allowing each process its own unique proposition value [6]. The consensus
problem on any finite decision domain can be reduced to log(n) instances of the bi-
nary consensus problem where n is the size of the decision domain and each binary
consensus instance represents deciding one bit of the final value. Since our interest
in this problem is only theoretical (we are not modeling any specific consensus sys-
tem) we accept the binary problem as an equally important form for which analysis
is tractable.

Crash model Perhaps the most important design decision that I made was in
the crash model. In the specification, the function pIsCrashed[p] denotes whether
or not a process p has crashed. A process may only act if it has not crashed.
Crashing is itself an action that an uncrashed process may take. The crash actions
are not included in the weak fairness condition. Therefore, even though a process p
always can crash it does not eventually have to. The result is that we can consider
behaviors for which some processes never crash.

Liveness conditions Precisely speaking, consensus is the assignment of decision
values to processes satisfying both agreement and validity conditions. Agreement
requires that all processes decide on the same value. Validity requires that some
process “proposed” the decided value (each process has a candidate value stored
in pInitialValue[p]). When checking each of these conditions crashed processes are
ignored if, and only if, they did not reach a decision prior to crashing.

Deadlock The TLC model-checker normally reports an error upon reaching a
state wherein no actions are enabled (no valid next-state exists). The specifica-
tion does bring the system to such a deadlock state when the consensus algorithm
is complete, so I have disabled deadlock errors in my model-checking using the
-deadlock flag.

2.2 The Naive Consensus Algorithm

• One process is assumed to be the coordinator. Assuming that each process
has a numerical identifier, we can implement this by making process 0 act as
the coordinator. (The specification chooses any process.)

• Coordinator broadcasts its initial value as a decision proposal and decides on
this value itself.

3



• All other processes wait for the coordinator’s proposal. When a process re-
ceives a proposal, it decides on the proposed value and sends an acknowl-
edgment message back to the coordinator. This acknowledgment message is
unnecessary for protocol correctness, but it is included in order to make the
model-checking behavior search space larger (more closely resembling a real,
useful, protocol).

2.3 Environment

The test machine had an Intel Core 2 6300 CPU @ 1.86GHz with 1GB RAM run-
ning a Linux 2.6.18 kernel. The Sun Java 2 VM version 1.5.0 09 was used. No
significant memory swapping occurred during model-checking. TLC was invoked
with the following syntax:
java -Xmx3500m tlc.TLC -deadlock -workers 2 -config [config file] [tla
file]

3 Results

Number of States Distinct Search Model-Checking time1

Processes generated states depth
1 11 8 5 0m 0.596s
2 112 64 8 0m 0.696s
3 706 332 11 0m 0.900s
4 3344 1362 14 0m 2.092s
5 13172 4817 17 0m 22.609s
6 45722 15392 20 8m 13.847s
7 144909 45709 23 203m 5.954s
8 429112 128476 26 4424m 41.992s

The worst case probability that TLC did not check all states was for the 8 state
model-checking where the probability was 2.0938389225580445E-9. New states are
checked for distinctness by comparing a 64-bit hash value called a fingerprint with
the fingerprints of all previously seen states. A collision in the hash function can
cause a new distinct state to be treated as a recurrence of an old state, resulting in
the search tree being erroneously pruned.

4 Discussion

The results of the consensus algorithm model-checking give several insights.

• Model-checking a medium or large sized system explicitly is intractable, even
for very simple systems such as this consensus protocol. However, intuitively,
positive results for up to eight processes indicate that the protocol is correct
for any number of processes, since there does not seem to be any real change in

1user time as measured by the OS via the time command

4



the problem beyond three processes. Formally, this could be proved manually
in the style of an induction proof (the model-checker is handling the base case
and we do the induction case manually). In this case however, the protocol is
so simple that a complete manual proof is trivial2; induction is not needed.

• It appears that the addition of a crash model does not create any significant
hurdles for model checking. The branching factor is increased, but only mod-
erately. This effect would also be seen if the protocol was made more complex
by adding another action.

5 Future Work

This project can move in several directions:

• We can explore modeling of failure detectors [2]. No practical failure detector
can provide perfect knowledge of the state of all processes. Thus, given a
set of crashed and uncrashed processes, there are many possible valid states
for its failure detectors. Modeling the failure detectors becomes a very chal-
lenging problem because it potentially involves a branching factor equal to
the cardinality of the power set of processes (2p). Once failure detectors are
modeled, a correct asynchronous consensus algorithm can be specified. See
appendix for more on failure detectors.

• We can try to extend the size of the systems we can check by applying either
data abstraction or network invariants.

A Asynchronous consensus with failure TLA+ code

module AsyncConsensus withFailure
This module defines a consensus protocol for an asynchronous system

It follows the model proposed by Chandra and Toueg, 1991

- Any pair of processes can communicate (complete graph topology)

- Communication channel is reliable and FIFO

- Processes have a priori knowledge of every process’s unique identifier

- Relative processor speeds and message transmission times are finite but unbounded

- Process stop-failures occur as actions. As many as n such crashes can occur in a run.

extends Naturals, Sequences, TLC , FiniteSets
constants Processes, the set of all processes in the network

Domain the set of all possible decision values

Perms ∆= Permutations(Processes) ∪ Permutations(Domain) we use symmetry on the processes and the domain

to simplify the initial state space

2Agreement and Validity are satisfied because all processes decide on the coordinator’s initial
value. There are no loops, so Termination is trivial.

5



variables

variables pMsgQ , pInitialValue, pDecisionValue, pIsCrashed , Coordinator , pProtocolState
pMsgQ [n] is state of process n’s communication system.

Its value is a FIFO queue of messages from other nodes to be delivered to this node

pInitial [n] is the inital value of process n.

pDecisionValue[n] is the decision value of process n. This is set when process n has reached a decision

pIsCrashed [n] indicates whether or not process n is crashed.

Coordinator is the process that makes a proposal

pProtocolState[n] is the protocol state of process n.

State ∆= 〈pMsgQ , pInitialValue, pDecisionValue, pIsCrashed , Coordinator , pProtocolState〉

Messages ∆=
Defines the set of all possible messages

[type : {“proposal”, “ack”, “nack”},
src : Processes,
dst : Processes,
data : Domain ∪ {“”}]

PREDICATES

Init ∆=
Initial state

∧ pDecisionValue = [p ∈ Processes 7→ “”]
∧ pInitialValue ∈ [Processes → Domain]
∧ pMsgQ = [p ∈ Processes 7→ 〈〉]
∧ pIsCrashed = [p ∈ Processes 7→ false]
∧ Coordinator ∈ Processes
∧ pProtocolState = [p ∈ Processes 7→ “awaitingProposal”]

TypeOK ∆=
Type invariant predicate

∧ pMsgQ ∈ [Processes → Seq(Messages)]
∧ pDecisionValue ∈ [Processes → Domain ∪ {“”}] “” indicates not decided

∧ pInitialValue ∈ [Processes → Domain]
∧ pIsCrashed ∈ [Processes → boolean ]
∧ Coordinator ∈ Processes
∧ pProtocolState ∈ [Processes → {“awaitingProposal”, “seenProposal”, “decided”, “awaitingAck”}]

ACTIONS

Send(msg) ∆=
Message is sent. Source and destination processes are msg.src and msg.dst

6



∧msg ∈ Messages enabled if msg is valid

∧ pMsgQ ′ = [pMsgQ except ![msg .dst ] = Append(pMsgQ [msg .dst ], msg)]
append the message to the msgQ of the destination process

NewMsg(m) ∆=
Process m.dst handles the receipt of a new message m

case m.type = “proposal” →
The message received was a proposal

∧ pDecisionValue ′ = [pDecisionValue except ![m.dst ] = m.data]
receiving process decides on the value received

∧ pProtocolState ′ = [pProtocolState except ![m.dst ] = “seenProposal”]
change state to reflect seeing the proposal

2other → unchanged 〈pDecisionValue, pProtocolState〉

Deliver(p) ∆=
Message is moved from a process p’s msgQ into its deliver buffer and delivered

flag is set to signal the process that it has received a new message.

∧ pMsgQ [p] 6= 〈〉 enabled if msqQ is not empty

∧NewMsg(Head(pMsgQ [p])) the new message handling action

∧ pMsgQ ′ = [pMsgQ except ![p] = Tail(pMsgQ [p] )]
pop message off msgQ

∧ unchanged pIsCrashed

Broadcast(bType, bSrc, bData) ∆=
Reliable boadcast of a message from src to all processes

pMsgQ ′ = [p ∈ Processes 7→ Append(pMsgQ [p],
[type 7→ bType, src 7→ bSrc, dst 7→ p, data 7→ bData])]

append the new message to all of the message queues

Crash(p) ∆=
Process crash action

∧ pIsCrashed ′ = [pIsCrashed except ![p] = true]
∧ unchanged 〈pMsgQ , pProtocolState, pDecisionValue〉

Proposal(p) ∆=
Process p proposes its own initial value

∧ Broadcast(“proposal”, p, pInitialValue[p])
∧ pProtocolState ′ = [pProtocolState except ![p] = “seenProposal”] p knows what it proposed

∧ pDecisionValue ′ = [pDecisionValue except ![p] = pInitialValue[p]] decide on InitialValue

Ack(p) ∆=
Process p acknowledges receipt of a proposal

∧ Send([type 7→ “ack”, src 7→ p, dst 7→ Coordinator , data 7→ “”])
∧ pProtocolState ′ = [pProtocolState except ![p] = “decided”]
∧ unchanged pDecisionValue

pAction(p) ∆=

7



network actions independent of the protocol

∨Deliver(p) deliver message

Protocol-specific actions

coordinator has some special actions

∨ ∧ p = Coordinator
enabled if haven’t proposed yet

∧ pProtocolState[Coordinator ] = “awaitingProposal”
∧ Proposal(Coordinator)

∨ ∧ pProtocolState[p] = “seenProposal”
∧Ack(p)

ProcessAction ∆=
All possible actions

choose a process to take action

∃ p ∈ Processes : ∧ ¬pIsCrashed [p] enabled if p is not crashed

∧ pAction(p)
∧ unchanged 〈pIsCrashed , Coordinator , pInitialValue〉

MAIN SPECIFICATION

Validity ∆=
All decision values were the initial value of some process

∀ i ∈ Processes : ∨ pIsCrashed [i ] ∧ pDecisionValue[i ] = “” crashed undecided

∨ ∃ j ∈ Processes : pDecisionValue[i ] = pInitialValue[j ]

Agreement ∆=
All decision values are the same

∀ i , j ∈ Processes : ∨ pIsCrashed [i ] ∧ pDecisionValue[i ] = “” crashed undecided

∨ pIsCrashed [j ] ∧ pDecisionValue[j ] = “” crashed undecided

∨ pDecisionValue[i ] = pDecisionValue[j ]

Liveness ∆= 3(Validity ∧Agreement) should this be 32?

Next ∆= ∨ ProcessAction
a process can crash at any time between actions

∨ ∃ p ∈ Processes : ∧ ¬pIsCrashed [p] enabled if p is not already crashed

∧ Crash(p)
∧ unchanged 〈Coordinator , pInitialValue〉 these never change

Fairness ∆= WF〈State〉(ProcessAction)

Spec ∆= Init ∧2[Next ]〈State〉 ∧ Fairness

theorem Spec ⇒ TypeOK ∧ Liveness

8



B Asynchronous consensus with failure TLC con-
figuration file sample

SPECIFICATION Spec
PROPERTY Liveness
INVARIANT TypeOK

CONSTANT Processes = p0, p1, p2, p3, p4
CONSTANT Domain = attack, retreat

SYMMETRY Perms

C Weak failure detector probability analysis

Chandra and Toueg [1] show that the weakest failure detector that can solve the
consensus problem must eventually satisfy the weak accuracy condition. Weak
accuracy requires that there is one correct process that is suspected by no other
process. It seems that this is actually a fairly difficult requirement to meet in large
systems. If we assume a system with n processes each of which has a constant
probability ρ of falsely suspecting that a process i has failed, the probability that
the failure detectors will satisfy the weak accuracy condition is
P(n, ρ) = 1− (1− (1− ρ)n−1)n .

For each of the lines in the above figure from left to right ρ = 0.9, 0.8 . . . 0.2, 0.1.
There is an exponential decay in the probability as the system increases in size.

However, it is important to note that in real systems there may be strong cor-
relations between false suspicions. For example, if timeouts are used as a basis
for detecting failures then a relatively slow process will tend to be suspected by
multiple processes. Thus, the above probability model may not be realistic.

9



It seems that under the same assumptions, a weaker accuracy condition requir-
ing that some process is transitively trusted by every process would not exhibit this
exponential decay in probability. It also seems that a failure detector satisfying this
condition would suffice for solving consensus (since all processes can receive data
from the universally-transitively-trusted process).

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector
for Solving Consensus. Journal of ACM, 43(4):685–722, 1996.

[2] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Asynchronous
Systems. In 10th ACM Symposium on Principles of Distributed Computing,
325–340, August 1991.

[3] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of ACM, 32:374–382, April 1985.

[4] R. Geurraoui and A. Schiper. Consensus: the Big Misunderstanding. In 6th
IEEE Workshop on Future Trends in Distributed Computing Systems, 183–188,
October 1997.

[5] L. Lamport. Specifying Systems. Boston: Addison-Wesley Longman Publish-
ing Co., 2002.

[6] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982.

[7] N. Lynch. Distributed Algorithms. San Francisco: Morgan Kaufmann Publish-
ers, 1996.

10


