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Video demonstration of Batphone app

Options

Current
acoustic
fingerprint

Location —>| 1) Home : Kltchen | >
estimate acoustictpnysical aistance: 0.084

2) Home : Office

>
acoustic+physical distance: 0.094
3) Home : Bedroom >
acoustic+physical distance: 0.111
4) Home : Living room >
acoustic+physical distance: 0.141
5) Ford : Office >

acoustic+physical distance: 81.342
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Definition: indoor localization without infrastructure

Given:
v" A smartphone
v" A building composed of many rooms

V' At least one prior visit to each room for training

Without:
x Specialized hardware
X Anything installed in the environment

x Cooperation from the building owner

Goal:

» Determine which room the smartphone is currently located in
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Summary

Motivation:
» Indoor localization is important
» Wi-Fi is imperfect and not always available

» Improved accuracy is desired

Distinctive elements of our method:
» Listen to background sounds
» Look at frequency domain

» Rank-order filter for noise

Results:
» 69% accuracy for 33 rooms using sound alone
» Publicly-available app
» Effectively combined Wi-Fi and sound
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Related Work: mobile acoustic sensing

M. Azizyan, |. Constandache, and R.R. Choudhury.
SurroundSense: mobile phone localization via ambience
fingerprinting. MobiCom'009.

» Characterized rooms by loudness distribution

» Did not use sound exclusively

H. Lu, W. Pan, N.D. Lane, T. Choudhury, and A.T. Campbell.
SoundSense: scalable sound sensing for people-centric applications
on mobile phones. MobiSys'09.

» Focused on transient sounds

» Activity detection, not localization
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Acoustic Background Spectrum (ABS)

A location fingerprint should be:

Distinctive
rEsponsive

Compact

>
>
>
» Efficiently-computable
» Noise-robust

>

Time-invariant
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Acoustic Background Spectrum (ABS)

A location fingerprint should be:

» Distinctive v 69% matching accuracy
» rEsponsive v 4-30 second sample

» Compact v' ~1kB per fingerprint

» Efficiently-computable v ~12% mobile CPU usage
> Noise-robust sometimes can adapt

» Time-invariant v tested on different days
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Signal Processing

microphone input

, Record audio samples
time—
[audio sample time series |

Divide samples into frames
S S | S A

ST SFTTTY TR IS AT T GRS G ST TG SRTTTTIE CETTTCATITE ATTT SATTITIEN ARTTITESN GRS TR
Multiply frames by a window function
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Compute power spectrum of each frame

Discard rows > 7 kHz

time——p
Sort each remaining row
[ ]
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'"m@s""g magnituce Extract 5" percentile column

and take logarithm
[DDDD]: Acoustic Background Spectrum

Standard spectral analysis

ABS fingerprint extraction
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ABS Fingerprints

Various rooms
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ABS Fingerprints

Various rooms Different positions and days
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Experimental Platforms

00:00:01:037@

(EE2)STE-800, wav

(b) Apple iPod Touch
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Experimental Rooms

Instances

Instances

Room type

0, Y/ C le
ltice ‘Oun 9% %Pute ljisgroomt)ture bay

Maximum room capacity

4 8 16 32 64 128 256 512
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Fingerprint-based localization

Supervised learning with two phases:
» Training — gather labeled fingerprints
» Testing/operation — observe new, unlabeled fingerprints

» Experiments use leave-one-out simulation

Our classifier:

» Euclidean distance metric for comparing fingerprints
(equivalent to RMS error)

» Nearest-neighbor classification

In summary

To guess the current location find the “closest” fingerprint in a
database of labeled fingerprints.

11/23



Accuracy Scaling

Accuracy (%)

Number of rooms in database (log scale)

Proposed Acoustic Background Spectrum —
SurroundSense [Azizyan et al.] ++-%-
Random chance

» SurroundSense is used in a way not intended by the authors:
using the microphone alone 12/23



ABS Parameters

Presented now:

» Filter rank
» Listening time

» Fingerprint
size/resolution

In paper:
» Frequency band
» Distance metric

» Spectrogram window
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Rank-order Filtering

Fingerprint type
100
standard spectrum E—
80 L proposed rank-order filtered spectrum . |

Accuracy (%)
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» 33 rooms in database

» Rank-order filters outperforms simple mean

= our transient noise filtering technique is effective
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Listening time
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Frequency resolution
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Batphone app in iTunes store

\
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1) Ford : 3.317
acoustic fingerprint distance: 192.6 dB
2) Ford : 2.215

acoustic fingerprint distance:, 198.0 dB
3) Tech : 1168
acoustic fingerprint distance: 198.2 dB
4) Tech : Ig76
acoustic fingerprint distance: 199.4 dB

5) Tech : f235
acoustic fingerprint distance: 200.1 dB

Acoustic

» Uses a 10 second
sliding window

» Streaming signal
processing

» Combines Wi-Fi with
acoustic fingerprint
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Batphone results

Accuracy (%)

100
80
60
40
20

Batphone localization accuracy

proposed methods

» 43 rooms in database

» Similar ABS accuracy for iPod and audio recorder

» Linear combination of Wi-Fi and ABS works well

» Didn't compare to state-of-the-art Wi-Fi localization
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Orthogonality of Wi-Fi and Acoustics

2D histograms of physical and fingerprint distances
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» Wi-Fi fingerprints from distant rooms are always different

» ABS fingerprints from nearby rooms can be quite different
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http://stevetarzia.com/listen

Can you identify this room?

The candidates, click to guess
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http://stevetarzia.com/listen

Conclusion

ABS fingerprint can be used for indoor localization
and it requires no infrastructure

See the paper for:
» Full parameter study
» Noise robustness experiment
» More Wi-Fi combination results
>

Battery-drain measurements
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Future work

v

Improved noise robustness

» Train the various noise states
» Adaptively chose fingerprint frequency band

Use floorplan and history: Markov movement model
Isolate factors that contribute to the ABS

Add other sensors, as in SurroundSense

vV v v Y

In-pocket detection
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Thanks!

For your enjoyment:
» App on the iTunes store:
search for Batphone

» Listening demo at
http://stevetarzia.com/listen

» Data and Matlab scripts at
http://stevetarzia.com

» See our other projects at
http://empathicsystems.org
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Parameter Study

(a) Frequency band | Accuracy
full (0-48kHz) | 59.8%
audible (0-20kHz) | 64.8%
low (0-7 kHz)* | 69.3%
very low (0-1kHz) | 61.0%
(0-600Hz) | 51.5%
(0-400Hz) | 44.3%
(0-300Hz) | 40.9%
(0-200Hz) | 30.7%
(0-100 Hz) | 15.5%
high (7-20 kHz) | 28.4%
ultrasonic (20-48 kHz) | 25.0%
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Parameter Study (cont.)

(b) Distance metric | Accuracy
Euclidean* | 69.3%
city block | 66.7%

(c) Spectrogram window | Accuracy
rectangular | 65.2%
Hamming* | 69.3%
Hann | 68.2%
Blackman | 67.4%
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Optimal Parameters

symbol | meaning optimal value | Batphone
Rs sampling rate 96 kHz 44.1kHz
Nspec spectral resolution | 2048 bins 1024 bins
Nfp ABS size 299 bins 325 bins
tspec frame size 0.1s 0.1s
tsamp sampling time 30s 10s
frequency band 0-7kHz 0-7kHz

window function

Hamming

rectangular
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Dealing with Noise by changing Frequency band

Occupancy Noise State
Frequency band | Quiet Conversation  Chatter

(a) Tech LRb lecture hall
low (0-7kHz) | 89.2% 2.5% 0.0%
(0-300Hz) | 75.7%  63.4% 0.0%
(b) Ford 3.317 lounge

low (0-7kHz) | 98.2% 47.2% —
(0-300Hz) | 87.7%  79.2% —
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Cumulative probability

0.2

Error characteristics of localization methods

Linear combinat/ion
- Two-step combination =-=---- g
Pre ABS

e Wi-Fi
___________ Random chance —--

1 10
Ranking of correct room (log scale)

» Batphone (ABS) beats Wi-Fi at fine granularity
» Wi-Fi beats Batphone (ABS) at coarse granularity.
» Combination is best overall
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