
1

Supervised Floorplanning
Thu Cung, Stephen Tarzia, and Kenneth Wade

March 21, 2008

Abstract—In this work, we have attempted to test the useful-
ness of augmenting a search algorithm withhuman supervision
for the floorplan design optimization problem, a classical NP-
hard problem in the field of Electronic Design Automation. We
have built floorplan visualization tools and a web interface[1]
that allows a user to rank a current pool of solutions, thus
guiding the search. Results show little quantitative difference
between user-guided and metric-guided searches. However,some
qualitative differences between results of the two experiments
are apparent. We discuss the implications of this experiment and
future directions that this research may take.

I. I NTRODUCTION

A. Floorplanning

Floorplanning is a decades-old problem in the design of
integrated circuits (computer chips). A circuit can be thought
of as a set ofcomponentsand a set of connections that must
be made between those components, callednets. In order to
manufacture a circuit on a chip die, the circuit’s components
must be arranged into the rectangular chip outline. The cost
of manufacturing a chip is super-linearly dependent on area
because fewer larger chip dies can be replicated on the same
silicon wafer and because larger chips are more likely to
be damaged by random imperfections on the manufactured
wafer. A chip’s performance (that is, the maximum frequency
at which it can be clocked) and power consumption depend
on the length of metal wires interconnecting its components;
shorter is better.

The floorplanning problem is a mathematical formalization
of the above design scenario [10]. Afloorplan is a non-
overlapping arrangement of rectangles on the plane. The qual-
ity of a floorplan is measured by both the area of its bounding-
box (the smallest rectangle that contains it) and an estimate
of its wirelength. Wirelength cannot be quickly determined,
since wire routing is a very complex task involving many
interdependent forking and detouring decisions1. However,
we can estimate it by the sum of each net’s half perimiter
wirelength (HPWL). HPWL is the height plus width of the
bounding box of a net’s members. Most often, the goal is of
floorplanning is to generate a floorplan while minimizing the
a weighted sum of area and HPWL.

Traditional floorplanning algorithms have been very suc-
cessful at solving small problem instances, up to several hun-
dred blocks. Some of the earliest algorithms were constructive;
they queue the blocks and then build a solution by placing
one block at a time until all are placed. More sophisticated
algorithms consider more than one complete solution. In the
searchapproach to optimization, a solution can be permuted

1In fact, routing even a single net is an NP-Complete problem known as
the minimal Steiner tree problem.

Fig. 1. A good floorplanning problem solution. Problems of this size (300
blocks) are easily solved by simulated annealing.

several ways to produce neighbor solutions. A search considers
a sequence of solution neighbors and finally chooses the
best one seen during this solution space traversal. The most
widely used floorplanning technique is simulated annealing
[6]. Simulated annealing is a type of search that initially
moves to random neighbors but eventually moves only to
betterneighbors; the transition from random moves togradient
descenthappens gradually and is controlled by thetemperature
variable.

However, there are more difficult floorplanning variants that
have not been adequately solved. The most obvious class
of difficult floorplanning problems is very large problems,
with thousands of blocks. In the past, floorplanning problems
did not enlarge even while the transistor count in circuits
exploded; designers simply used higher levels of abstraction
to define blocks. However, the advent of macro-blocks, large
pre-designed blocks often licensed from a third party, has
changed that. There is now a need to place circuits composed
of perhaps several macro-blocks and thousands of small blocks
representing custom “glue” circuitry; traditional floorplanners
cannot solve these problems [9].

Another class of more difficult floorplanning variants in-
cludes additional constraints or minimization objectivesFor
example, it may be easier to manufacture a squarer chip; thus,
we may have an aspect ratio constraint. Alternatively, we may
seek to limit the peak temperature of the chip by spreading
out the hottest-running blocks. There may also be some critical
path wirelength that must be kept below a certain threshold to
meet some timing requirement. There is virtually no limit to
the complexities that we can add to a floorplanning problem.

2

B. Hypothesis

We hypothesize that a user will be able to predict the long-
term quality of block arrangements under continued search
when presented with a meaningful visualization; we believe
that feedback from the user can be used to more quickly find
good solutions in the course of an optimization search. We
proceed as follows. In section I-C, we summarize influential
past work; we describe our experiment and results in sections
II and III; finally, we draw conclusions and propose extensions
to this work in sections IV and V.

C. Related Work

a) Floorplan visualization:There is a long tradition of
floorplan visualization in the literature. Most papers presenting
floorplanning algorithms include sample illustrations of the
floorplans that they produce in addition to the standard col-
lection of area and wirelength statistics. This practice seems
to imply a recognition in the community that metrics alone do
not entirely capture the quality of a floorplan. There has also
been some work on visualization for manual chip design tools
[4].

b) Supervisory control:The human factorscommunity
has defined a mode of human-machine interaction calledsu-
pervisory control[12]. This scheme is based on the recognition
that humans and computers each excel at different types
of tasks [11]. The machine controls low-level functions and
provides both visual feedback and control “knobs” to the
human. The human interprets the machine and environment
state and directs the machine accordingly. Such a system has
the advantage of being both adaptive and perhaps simpler
to build than a fully automated system. Along the axis of
increasing problem difficulty there is a point beyond which the
time needed to program a fully-automated algorithm exceeds
the aggregate time needed for humans to solve each problem
manually.

c) Artificial intelligence: von Ahn’s work demonstrates
the efficacy of human computation in solving AI problems
[13]–[16]. However, von Ahn’s formal model of a human
algorithm game as an input to output mechanism is limiting
[13, chapter 7]; it presupposes a well defined, and thus easily
checkable, problem. Many practical problems are ill-posed;
the value of a particular solution depends on a vast amount of
context which cannot be effectively encoded into any known
algorithm. In these cases, the primary difficulty is in refining
the problem definition into one that has a unique solution
which is most valuable in the current context. This refinement
step is a hard AI problem and is thus amenable to human
computation. A human in the loop can play the role of
supervisor, adjusting goals and evaluating progress of some
underlying computation.

d) Human directed search:Lin and Dinda’s work on
virtual machine scheduling [7] entails the use of direct user
input to improve scheduling decisions. Users provided feed-
back regarding their “discomfort levels” while carrying out
tasks on everyday applications in a controlled environment.
The feedback gathered furthered scheduling procedures in that
it is clear users tolerance levels vary drastically depending on

 6.5e+06

 7e+06

 7.5e+06

 8e+06

 8.5e+06

 9e+06

 9.5e+06

 1e+07

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

runtime (hours)

Fully automated solution quality

chip area
total wirelength

Fig. 2. Long runtime solution quality

the user and task being performed. Achieving auniversally
optimal scheduling model is thus paradoxical an optimal
scheduling solution cannot be universal as it must adapt to
specific user preferences, which have few commonalities. Op-
timization can be achieved by tailoring scheduling preferences
to users based on his/her individual preferences.

II. M ETHODOLOGY

To test our hypothesis, we perform a simple experiment
using an existing floorplanner and set of custom visualization
and user interface scripts. Using a single problem input, we
generate a pool of twenty candidate solutions. The quality of
the solutions is then ranked; in the experimental setup a human
user does this ranking and in the the control setup solutionsare
ranked by wirelength. The best-ranked five candidates are then
used to create the next pool of twenty candidates; each of the
five candidates is used as a starting point for the floorplanner
four times. The process is then repeated beginning with the
ranking of the new pool of twenty candidates. In the following
subsections we describe our experimental setup in more detail.

A. Floorplanning framework

In our experiments we use the Parquet floorplanner, a high-
quality academic code [3]. Parquet uses simulated annealing
and is highly configurable. In our experiments, we set the
algorithm runtime to ten minutes and set the annealing temper-
atureT = To/2r wherer is the current round of ranking. By
lowering the initial temperature every round, we are enforcing
less randomness in the search in later rounds.

The sample problemibm02 that we use is taken from a
recent publication on difficult floorplanning instances [2], [9].
It contains 1471 blocks, 8508 nets, and the ratio of largest to
smallest block area is 3004.3. Figure 2 indicates the difficulty
of this problem; the simulated annealing search still makes
slow progress after several hours of runtime.

A MySQL database stores an entry for each candidate with
columns for solution statistics and user rankings.

3

Fig. 3. A floorplan visualized. More examples can be seen at the website
[1] and in figure 4.

B. Visualization

The Parquet floor planner we used considered area and wire
length when generating floor plans. Thus an optimal floor
plan would have minimal area and require the least amount
of wire length. If these two metrics were minimized, white
space (area which components have not been assigned to)
would be optimized as well. Aspect ratio (how “square” the
dimensions of the floor plan are) would not necessarily be
optimized. Parquet provided numerical values for these four
metrics for each floor plan. Unfortunately, the changes in area
and wire length from floor plan to floor plan were not easily
distinguishable. In order to allow for effective integration of
user rankings, we needed a method to depict these metrics
visually, so as to successfully engage users.

To create the visualizations, we used gnuplot 4.0, a
command-driven, function and data plotting program. gnuplot
is most used for its ability to take data as input and then output
the data graphically. We used both gnuplots ability to generate
graphs and also used the program to generate visualizations
of our floor plans.

Visual depictions of the area and wires, whether through
images or graphical, were difficult. Because the images and
graphs were capturing such a large quantity of information,
oftentimes showing these numbers visually resulted in clut-
tered and, consequently, useless images. The visualizations
thus needed to relay these metrics in such a way that users can
easily distinguish how the metrics vary between the different
floor plans.

To illustrate both area and wire length, our visualizations
displayed both the layout of the individual components as
well as their corresponding wires (see Figure 3, top). Users
could see how the components were organized and also see the

extension and intersection of wires. To generate these images,
a script modifies the basic gnuplot visualization that Parquet
already provides.

When comparing later generations of floor plans to earlier
ones, it is easy to distinguish between the different floor
plans (see Figures 4 a, c). There is a noticeable difference
between the saturation of the red of the wires. However, when
comparing floor plans of the same generation (see Figure 4
a, b), it is difficult to visually determine the changes of the
metrics between different floor plans of the same generation.

To capture the differences in area and wire length of the
visualizations, we decided to include graphs. One idea was
to display a scatter plot of wire length against the number
of intersections per wire. However, it was difficult to visually
determine differences in the graphs of the floor plans.

We decided to use bar graphs (see Figure 3, bottom). The
bar graphs depict two measurements: the ratio of total wire
length (HPWL) to total area and the aspect ratio (variation
of aspect ratio from 1). These graphs visualize the actual
values of the metrics, allowing users to compare the floor plans
based on each designs measurements. The bars of these graphs
managed to capture the metric differences of the floor plans.
We used gnuplot and C++ to create the bargraphs. The C++
program takes a file and values as input and generates .plt and
.dat files, which gnuplot uses to create the graphs themselves.

A PHP script calling ImageMagick was used to resize and
join the gnuplot figures.

C. User interface

In order to get the user input to guide the creation of the next
generations of the floorplan, the website allows a user to rate
a current generation’s floorplan [1]. For a given benchmark,
the system randomly selects four sets of visualizations and
bar graphs and presents them to the user. Each visualization
illustrates to the user the actual layout of the components
and corresponding wires, while the paired bar graph has
information about the total wire length, the total area, and
variation of the aspect ratio.

Upon inspection of the visualization and mentally process-
ing the data presented by the bar graph, the user is able to
make a decision about which of the four presented floorplans
occupies the smallest area and whose wire length is also
minimized. The best of the four is marked “best” and the
worst of the four is marked “worst.” The remaining floorplans
are simply left alone for that iteration.

The best and work ratings are translated into rankings using
the following formula:

(best count − worst count)/total count

wheretotal count is the number of times that the candidate
was presented to the user for rating. Iftotal count is zero,
then that candidate is ranked at the bottom of the list of
best solutions. The interface was implemented in PHP on an
Apache web server with connections to the MySQL database
described above.

4

Fig. 4. (a) and (b) are visualizations from the initial candidate pool. (c) is from a much later stage.

(a)

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 1.4e+07

 1.5e+07

 1.6e+07

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

runtime (hours)

Solution quality

chip area
total wirelength

(b)

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 1.4e+07

 1.5e+07

 1.6e+07

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

runtime (hours)

Solution quality

chip area
total wirelength

Fig. 5. Automated results (a) and Supervised results (b)

5

III. RESULTS

We captured the area and total wire length of each floor
plan at different generations for both the automated, Parquet-
generated floor plans as well as those which involved user-
input. Graphs of these results are shown in Figures III a
(automated) and III b (user-input).

The performance overhead of generating the visualizations
was significant, but not overwhelming. Total runtime was
about 65 seconds. The major bottleneck in visualization wasin
rendering an EPS figure to a very high resolution bitmap. This
operation took about 45 seconds and was required in order to
get the very fine lines representing floorplan wires. Image and
floorplan storage overhead is minimal: about 1.5 Mbyte per
candidate.

IV. CONCLUSIONS

There is relatively little difference between the resulting
metrics of the automated approach and the user-ranked ap-
proach. Although the user rankings for the later generation
are not as uniform as the automated rankings, the values of
the chip area and cumulative wire length align very closely to
the values that resulted from Parquet.

While we had anticipated that user rankings would allow
Parquet to arrive at an optimized solution faster, our results
indicate otherwise. User involvement in the process was about
equally effective as the automated approach, in arriving atan
optimal solution.

Although this does not align with what we had hypothe-
sized, it does not disprove that user-involvement throughout
floor planning is not useful. If anything, user involvement can
be as equally effective as automated programs in designing
floor plans.

In addition, the user driven results seem to bequalitatively
different. In particular, their aspect ratios were squarer. The
average and maximum AR of the user driven results was 0.467
and 0.847, respectively. This compares favorably to the values
of 0.439 and 0.805 obtained in the control group. This is
a good example of the problem objectives being influenced
by the human supervisor; aspect ratio was not explicitly a
floorplanning goal for Parquet.

Looking at the results of figure III, the lack of quantitative
solution improvement over the three generations is troubling.
This seems to indicate a flaw in our experimental setup.
Different values for the generation runtime, initial temperature
and temperature dropoff rate may be beneficial.

V. FUTURE WORK

Improving the visualizations is an area we would like
to explore. Visualizations should allow for easier distinction
between the level of optimization of each floor plan.

To better capture area, we may want to allow users the
option of only viewing the outline of the component layout,
as opposed to each individual component. If we were to only
give an outline of the chip area overall, we would include
the value of whitespace for each floor plan as well, so that
users would have a way of knowing how tightly packed the
components were.

With the current visualizations, we would like to capture
how saturated each image is with the color redessentially the
wire length of the floor plan. Because saturation lessens with
each generation of floor plans, depicting the level of saturation
alongside each floor plan within a given generation could
prove useful.

Additionally, creating animated GIFs of the floor plans
could also help users. Rather than depicting all of the wires
on a single image, we could create separate images for
short, medium, and long wires. Color-coding these wires and
allowing users to layer these images could prove useful.

As an additional experiment, one could let the automated
run choose random starting solutions for the next generation
rather than those with the shortest wirelength. Also, the user
could play a different role, choosing the runtime parameters
for floorplanner in next stage; as we have said, the Parquet
floorplanner is highly configurable.

There are also alternatives to simulated annealing that might
be better suited to human involvement. A genetic algorithm
[5] [8] keeps a pool of solutions that are “bred” to create
the next generation. Traditionally, a cost function determines
which solutions produce offspring and which perish; a human
could make these decisions instead.

A. Floorplanning as a game

Currently, the solution provided to the floorplanning prob-
lem sparks limited interest outside of an experienced floorplan-
ner that has an idea of what they want. Presenting this problem
as a game that is analogous to a simplified city planning
game can allow for more difficult floorplanning with additional
constraints and/or minimization objectives. For example,crime
rate could represent temperature at various points on the board,
roads and rails could represent the wire length or density and
so on.

Since the floorplanning problems we are solving will be
complex, large scale cities will be presented to the user in a
particular state instead of being built from the ground up. The
user would not directly control building placements, but they
would instead influence the evolution of the city.

The goal of a typical city planning game is to make as
much money as possible with a single city that the user has
constructed over a long period of time. For our game, there
can and will be several different goals for different stages.
The user would be able to identify problem regions within the
city that are preventing the goal from being achieved. If the
primary goal for a stage were to lower the crime rate in all
areas of the city that were above a certain rate without adding
more Police stations, the user could select types of buildings
that attract crime and let the system focus on changing them
through the city’s next evolution. If the primary goal for a stage
were to maximize traffic flow between certain “high priority”
regions, the user could select road segments and rules that
would prioritize the change

More points would be awarded if various city goals are
achieved in fewer evolutions of the city. The evolutions could
be presented to the user as either the same city at the same
time in a parallel dimension, or the same city at a point not

6

to far in time. Instead of directly manipulating buildings and
infrastructure, it would be that the user’s policies will affect
the way the city evolves in the near future. We could also limit
the amount of real-world time that a user can spend making
decisions through the use of a countdown timer, which would
give the user some since of urgency and allow them to be more
efficient at playing the game as they become more familiar.
In addition to the time restriction, a limit could be placed on
the number of ”policies” that can be applied to a generation
for it’s next evolutionary iteration.

B. Beyond Floorplanning

Floorplanning was chosen as a target problem for supervised
search simply because of one authors past experience with the
problem. However, we do not claim that it is the only or the
best problem for supervised search. We believe that there is
plenty of exciting work to be done on supervised search in
other computing fields as well.

REFERENCES

[1] http://belmont.eecs.northwestern.edu/cgi-bin/floorplan/index.php.
[2] http://vlsicad.eecs.umich.edu/bk/ispd06bench.
[3] S. N. Adya and I. L. Markov. Fixed-outline floorplanning :Enabling

hierarchical design.IEEE Trans. on VLSI Systems, 11(6):1120–1135,
December 2003.

[4] D.L. DeMaris. Visualization in a vlsi design automationsystem. IBM
J. Res. Develop., 35(1/2):238–243, January/March 1991.

[5] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[6] S. Kirkpatrick, Jr. C.D. Delatt, and M.P. Vecchi. Optimization by
simulated annealing.Science, May 1983.

[7] B. Lin. Human-driven Optimization. PhD thesis, Northwestern Univ.,
2007.

[8] S. Nakaya, T. Koide, and S. Wakabayashi. An adaptive genetic alforithm
for vlsi floorplanning based on sequence-pair. Inproc. Intl. Sym. on
Circuits and Systems. IEEE, May 2000.

[9] A.N. Ng, I.L. Markov, R. Aggarwal, and V. Ramachandran. Solving
hard instances of floorplacement. Inproc. Intl. Sym. Physical Design.
ACM, April 2006.

[10] S.M. Sait and H. Youssef.VLSI Physical Design Automation, chapter
3: Floorplanning. World Scientific, 1999.

[11] T.B. Sheridan. Functional allocation: algorithm, alchemy or apostasy?
Int. J. Human-Computer Studies, 52:203–216, 2000.

[12] T.B. Sheridan.Handbook of Human Factors and Ergonomics, chapter
38: Supervisory Control, pages 1025–1052. Wiley, 3rd edition edition,
2006.

[13] L. von Ahn. Human Compuation. PhD thesis, CMU, December 2005.
[14] L. von Ahn. Games with a purpose.IEEE Computer, 39(6), June 2006.
[15] L. von Ahn and L. Dabbish. Labeling images with a computer game.

In proc. CHI 2004, 2004.
[16] L. von Ahn, R. Liu, and M. Blum. Peekaboom: A game for locating

objects in images. Inproc. CHI 2006, 2006.

