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Abstract—In this work, we have attempted to test the useful-
ness of augmenting a search algorithm withhuman supervision
for the floorplan design optimization problem, a classical NP-
hard problem in the field of Electronic Design Automation. We
have built floorplan visualization tools and a web interface[1]
that allows a user to rank a current pool of solutions, thus
guiding the search. Results show little quantitative diffeence
between user-guided and metric-guided searches. Howeveome
qualitative differences between results of the two experients
are apparent. We discuss the implications of this experimemand
future directions that this research may take.

I. INTRODUCTION
A. Floorplanning

Floorplanning is a decades-old problem in the design of
integrated circuits (computer chips). A circuit can be thlou
of as a set otomponentsnd a set of connections that musktig. 1. A good floorplanning problem solution. Problems df thize (300
be made between those components, caflets In order to blocks) are easily solved by simulated annealing.
manufacture a circuit on a chip die, the circuit's composent
must be arranged into the rectangular chip outline. The cost
of manufacturing a chip is super-linearly dependent on areaveral ways to produce neighbor solutions. A search cersid
because fewer larger chip dies can be replicated on the sagngequence of solution neighbors and finally chooses the
silicon wafer and because larger chips are more likely tsest one seen during this solution space traversal. The most
be damaged by random imperfections on the manufactusgiiiely used floorplanning technique is simulated annealing
wafer. A chip’s performance (that is, the maximum frequenqg]. Simulated annealing is a type of search that initially
at which it can be clocked) and power consumption depensbves to random neighbors but eventually moves only to
on the length of metal wires interconnecting its componentsetterneighbors; the transition from random movegtadient

shorter is better. descenhappens gradually and is controlled by teenperature
The floorplanning problem is a mathematical formalizatiogariable.
of the above design scenario [10]. foorplan is a non-  powever, there are more difficult floorplanning variantsttha

overlapping arrangement of rectangles on the plane. The qu@yve not been adequately solved. The most obvious class
ity of a floorplan is measured by both th_e area of its boun(_jingf difficult floorplanning problems is very large problems,
box (the smallest rectangle that contains if) and an esimgjity thousands of blocks. In the past, floorplanning protsem
of its wirelength. Wirelength cannot be quickly determinedjiq not enlarge even while the transistor count in circuits
since wire routing is a very complex task involving manyyioded: designers simply used higher levels of abstmcti
interdependent forking and detouring decisibnsiowever, 1, gefine blocks. However, the advent of macro-blocks, large
we can estimate it by the sum of each net's half perimitgfe_gesigned blocks often licensed from a third party, has
wirelength (HPWL). HPWL is the height plus width of thechanged that. There is now a need to place circuits composed
bounding box of a net's members. Most often, the goal is @ herhaps several macro-blocks and thousands of smakdloc

roorpIanning is to generate a floorplan while minimizing th?epresenting custom “glue” circuitry; traditional floogpiners
a weighted sum of area and HPWL. cannot solve these problems [9].

Traditional f!oorplannlng algon_thms have been very suc- Another class of more difficult floorplanning variants in-
cessful at solving small problem instances, up to sevenal hy

: . . cludes additional constraints or minimization objectives
dred blocks. Some of the earliest algorithms were consﬂmct_ example, it may be easier to manufacture a squarer chip; thus

they queue the plocks z_;md then build a solution by_ placm may have an aspect ratio constraint. Alternatively, wg ma
one block at a time until all are placed. More sophsucate%ek to limit the peak temperature of the chip by spreading

gleg:rg:]hamsrgg‘gﬁlfsromﬁrﬁ;:t?gnOgesgfurg(?:]et:eaﬁog)ue“ogrrru tte t the hottest-running blocks. There may also be someatiti
PP P ' P path wirelength that must be kept below a certain threstmld t
1in fact, routing even a single net is an NP-Complete probleravin as M€et some timing requirement. There is virtually no limit to

the minimal Steiner tree problem. the complexities that we can add to a floorplanning problem.



B. HypOtheSiS Fully automated solution quality
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We hypothesize that a user will be able to predict the long- - T total wirelength
term quality of block arrangements under continued search 9508 |t " + . %
when presented with a meaningful visualization; we believe ses06 | ’ ’

that feedback from the user can be used to more quickly find
good solutions in the course of an optimization search. We
proceed as follows. In section I-C, we summarize influential 8e+06 |
past work; we describe our experiment and results in sextion
Il and IlI; finally, we draw conclusions and propose extensio

to this work in sections IV and V. 7e+06 1
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C. Related WOI’k runtime (hours)
a) Floorplan visualization: There is a long tradition of
floorplan visualization in the literature. Most papers prag
floorplanning algorithms include sample illustrations 6Bt rig 2. Long runtime solution quality
floorplans that they produce in addition to the standard col-
lection of area and wirelength statistics. This practicense

to imply a recognition in the community that metrics alone dghe user and task being performed. Achievingisiversally

not entirely capture the quality of a floorplan. There ha® algptimal scheduling model is thus paradoxical an optimal
been some work on visualization for manual chip design toadgheduling solution cannot be universal as it must adapt to
[4]. specific user preferences, which have few commonalities. Op

b) Supervisory control:The human factorscommunity  timization can be achieved by tailoring scheduling prefees
has defined a mode of human-machine interaction called to users based on his/her individual preferences.

pervisory contro[12]. This scheme is based on the recognition
that humans and computers each excel at different types
of tasks [11]. The machine controls low-level functions and Il. METHODOLOGY

provides both visual feedback and control “knobs” to the . . .
, : , To test our hypothesis, we perform a simple experiment
human. The human interprets the machine and environment . ) L
g an existing floorplanner and set of custom visualbirati

state and directs the machine accordingly. Such a system H%\' Lser interface scrits. Using a sinale problem inout. we
the advantage of being both adaptive and perhaps simp'?er P'S. 9 ge p put,

to build than a fully automated system. Along the axis (ﬁ’lenerate a pool of twenty candidate solutions. The quafity o

increasing problem difficulty there is a point beyond whikh t : . . .
. gp y P yor user does this ranking and in the the control setup solutioas
time needed to program a fully-automated algorithm exceeds

. ked by wirelength. The best-ranked five candidates ame th
tmhgna;%glglryegate time needed for humans to solve each problll’ir%d to create the next pool of twenty candidates; each of the

e . i , five candidates is used as a starting point for the floorplanne
c¢) Atrtificial intelligence: von Ahn’s work demonstrates ) ; . .
: Lo . four times. The process is then repeated beginning with the
the efficacy of human computation in solving Al problems " . . .
\ ranking of the new pool of twenty candidates. In the follogvin
[13]-[16]. However, von Ahn’s formal model of a human . . . . )
; ) . subsections we describe our experimental setup in mord.deta
algorithm game as an input to output mechanism is limiting
[13, chapter 7]; it presupposes a well defined, and thusyeasil
checkable, problem. Many p_racﬂcal problems are |II-poseg' Floorplanning framework
the value of a particular solution depends on a vast amount of . .
context which cannot be effectively encoded into any known In our experiments we use the Parquet floorplanner, a high-
algorithm. In these cases, the primary difficulty is in refii quath agademlc cpde [3]. Parquet uses_smulated anmealin
the problem definition into one that has a unique soluticknd is hlghly_conflgurablt_e. In our experiments, we set the
which is most valuable in the current context. This refinemealgorithm runtime to ten minutes and set the anneallr_wg tempe
step is a hard Al problem and is thus amenable to humatureT = T,/2" wherer is the current round of ranking. By
computation. A human in the loop can play the role dpwering the initial temperature every round, we are erifagc
supervisor, adjusting goals and evaluating progress ofesoass randomness in the search in later rounds.
underlying computation. The sample problenibm02 that we use is taken from a
d) Human directed searchLin and Dinda’s work on recent publication on difficult floorplanning instances, [H].
virtual machine scheduling [7] entails the use of directrusét contains 1471 blocks, 8508 nets, and the ratio of largest t
input to improve scheduling decisions. Users provided feesimallest block area is 3004.3. Figure 2 indicates the dlfficu
back regarding their “discomfort levels” while carrying touof this problem; the simulated annealing search still makes
tasks on everyday applications in a controlled environmerstow progress after several hours of runtime.
The feedback gathered furthered scheduling procedurémint A MySQL database stores an entry for each candidate with

it is clear users tolerance levels vary drastically depegdin columns for solution statistics and user rankings.

e solutions is then ranked; in the experimental setup aalmum



extension and intersection of wires. To generate thesedsjag
a script modifies the basic gnuplot visualization that Patqu
already provides.

When comparing later generations of floor plans to earlier
ones, it is easy to distinguish between the different floor
plans (see Figures 4 a, c). There is a noticeable difference
between the saturation of the red of the wires. However, when
comparing floor plans of the same generation (see Figure 4
a, b), it is difficult to visually determine the changes of the
metrics between different floor plans of the same generation

To capture the differences in area and wire length of the
visualizations, we decided to include graphs. One idea was
to display a scatter plot of wire length against the number
of intersections per wire. However, it was difficult to vidlya
determine differences in the graphs of the floor plans.

We decided to use bar graphs (see Figure 3, bottom). The
bar graphs depict two measurements: the ratio of total wire
length (HPWL) to total area and the aspect ratio (variation
o of aspect ratio from 1). These graphs visualize the actual
I " values of the metrics, allowing users to compare the floanpla

based on each designs measurements. The bars of these graphs
managed to capture the metric differences of the floor plans.
Fig. 3. A floorplan visualized. More examples can be seen etvthbsite We used gnuplot and C++ to create the bargraphs. The C++
(1] and in figure 4. program takes a file and values as input and generates .plt and
.dat files, which gnuplot uses to create the graphs thenselve
A PHP script calling ImageMagick was used to resize and

. join the gnuplot figures.
The Parquet floor planner we used considered area and wire

length when generating floor plans. Thus an optimal floor
plan would have minimal area and require the least amoygt
of wire length. If these two metrics were minimized, white
space (area which components have not been assigned tdh order to get the user input to guide the creation of the next
would be optimized as well. Aspect ratio (how “square” thgenerations of the floorplan, the website allows a user ® rat
dimensions of the floor plan are) would not necessarily & current generation’s floorplan [1]. For a given benchmark,
optimized. Parquet provided numerical values for these fothe system randomly selects four sets of visualizations and
metrics for each floor plan. Unfortunately, the changes @aarbar graphs and presents them to the user. Each visualization
and wire length from floor plan to floor plan were not easiljllustrates to the user the actual layout of the components
distinguishable. In order to allow for effective integatiof and corresponding wires, while the paired bar graph has
user rankings, we needed a method to depict these metiitformation about the total wire length, the total area, and
visually, so as to successfully engage users. variation of the aspect ratio.

To create the visualizations, we used gnuplot 4.0, aUpon inspection of the visualization and mentally process-
command-driven, function and data plotting program. goupling the data presented by the bar graph, the user is able to
is most used for its ability to take data as input and thenwutpmake a decision about which of the four presented floorplans
the data graphically. We used both gnuplots ability to gateer occupies the smallest area and whose wire length is also
graphs and also used the program to generate visualizatiomisimized. The best of the four is marked “best” and the
of our floor plans. worst of the four is marked “worst.” The remaining floorplans

Visual depictions of the area and wires, whether througire simply left alone for that iteration.
images or graphical, were difficult. Because the images andThe best and work ratings are translated into rankings using
graphs were capturing such a large quantity of informatiothe following formula:
oftentimes showing these numbers visually resulted in-clut
tered and, consequently, useless images. The visualizatio (best_count — worst_count)/total_count
thus needed to relay these metrics in such a way that users can
easily distinguish how the metrics vary between the difitrewheretotal_count is the number of times that the candidate
floor plans. was presented to the user for rating.téftal_count is zero,

To illustrate both area and wire length, our visualizationthen that candidate is ranked at the bottom of the list of
displayed both the layout of the individual components dsest solutions. The interface was implemented in PHP on an
well as their corresponding wires (see Figure 3, top). Usefgpache web server with connections to the MySQL database
could see how the components were organized and also seediscribed above.

B. Visualization

User interface
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Fig. 5. Automated results (a) and Supervised results (b)
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(a) and (b) are visualizations from the initial catate pool. (c) is from a much later stage.
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[1l. RESULTS With the current visualizations, we would like to capture

We captured the area and total wire length of each roBF_)W saturated each image is with the color re_zdessentiaﬁy t_h
plan at different generations for both the automated, RerquWire length of the floor plan. Because saturation Iessgnls wit
generated floor plans as well as those which involved us&ach generation of floor plans, depicting the level of saitoma
input. Graphs of these results are shown in Figures |1l @ongside each floor plan within a given generation could
(automated) and Il b (user-input). prove useful.

The performance overhead of generating the visualizationgAdditionally, creating animated GIFs of the floor plans
was significant, but not overwhelming. Total runtime wa§ould also help users. Rather than depicting all of the wires
about 65 seconds. The major bottleneck in visualizationiwasOn & single image, we could create separate images for
rendering an EPS figure to a very high resolution bitmap. Th#fort, medium, and long wires. Color-coding these wires and
operation took about 45 seconds and was required in order®#Wing users to layer these images could prove useful.
get the very fine lines representing floorplan wires. Image an As an additional experiment, one could let the automated

floorplan storage overhead is minimal: about 1.5Mbyte p&#n choose random starting solutions for the next generatio
candidate. rather than those with the shortest wirelength. Also, ther us

could play a different role, choosing the runtime paranseter
IV. CONCLUSIONS for floorplanner in next stage; as we have said, the Parquet
. . . . ._floorplanner is highly configurable.
There is relatively little difference between the resigtin There are also alternatives to simulated annealing thattmig

metrics of the automated appro_ach and the user—rankedlgg-better suited to human involvement. A genetic algorithm
proach. Although the user rankings for the later generatuf [8] keeps a pool of solutions that are “bred” to create

are nqt as uniform as the_ autqmated rank_ings, the valuest next generation. Traditionally, a cost function deiess
the chip area and cumulative wire length align very closely (NhiCh solutions produce offspring and which perish; a human

the va}lues that resuIFe_d from Parquet. . could make these decisions instead.
While we had anticipated that user rankings would allow

Parquet to arrive at an optimized solution faster, our tesul
indicate otherwise. User involvement in the process wasiab@\. Floorplanning as a game

equally effective as the automated approach, in arrivingmt  cyrently, the solution provided to the floorplanning prob-

optimal solution. _ _ lem sparks limited interest outside of an experienced flaorp
~Although this does not align with what we had hypotheser that has an idea of what they want. Presenting this proble

sized, it dqes_not disprove that us_er—mvolve_ment throughayg 4 game that is analogous to a simplified city planning

floor planning is not useful. If anything, user involvemeanc game can allow for more difficult floorplanning with additiin

be as equally effective as automated programs in designfighstraints and/or minimization objectives. For examgliene

floor plans. rate could represent temperature at various points on taeibo

_In addition, the user driven results seem tocpalitatively o5ds and rails could represent the wire length or density an
different In particular, their aspect ratios were squarer. Thg, gn

average and maximum AR pf the user driven results was 0.467gince the floorplanning problems we are solving will be
and 0.847, respectively. This compares favorably to theesl complex, large scale cities will be presented to the user in a

of 0.439 and 0.805 obtained in the control group. This {Saricular state instead of being built from the ground upe T

a good example of the problem objectives being influencgder would not directly control building placements, buyth
by the human supervisor; aspect ratio was not explicitly \3,,1d instead influence the evolution of the city.

floorplanning goal for Parquet. The goal of a typical city planning game is to make as

Looking at the results of figure Ill, the lack of quantitative,,ch money as possible with a single city that the user has
solution improvement over the three generations is rowli ¢,nqircted over a long period of time. For our game, there
This seems to indicate a flaw in our experimental setup,, ang will be several different goals for different stages
Different values for the generation runtime, initial temg@re e ser would be able to identify problem regions within the
and temperature dropoff rate may be beneficial. city that are preventing the goal from being achieved. If the

primary goal for a stage were to lower the crime rate in all
V. FUTURE WORK areas of the city that were above a certain rate without agdin

Improving the visualizations is an area we would likenore Police stations, the user could select types of bghlin
to explore. Visualizations should allow for easier distioo that attract crime and let the system focus on changing them
between the level of optimization of each floor plan. through the city’s next evolution. If the primary goal fortage

To better capture area, we may want to allow users theere to maximize traffic flow between certain “high priority”
option of only viewing the outline of the component layoutiegions, the user could select road segments and rules that
as opposed to each individual component. If we were to onlyould prioritize the change
give an outline of the chip area overall, we would include More points would be awarded if various city goals are
the value of whitespace for each floor plan as well, so thathieved in fewer evolutions of the city. The evolutionsidou
users would have a way of knowing how tightly packed thiee presented to the user as either the same city at the same
components were. time in a parallel dimension, or the same city at a point not



to far in time. Instead of directly manipulating buildingsdca
infrastructure, it would be that the user’s policies wilFeadt

the way the city evolves in the near future. We could alsotlimi
the amount of real-world time that a user can spend making
decisions through the use of a countdown timer, which would
give the user some since of urgency and allow them to be more
efficient at playing the game as they become more familiar.
In addition to the time restriction, a limit could be placed o
the number of "policies” that can be applied to a generation
for it's next evolutionary iteration.

B. Beyond Floorplanning

Floorplanning was chosen as a target problem for supervised
search simply because of one authors past experience with th
problem. However, we do not claim that it is the only or the
best problem for supervised search. We believe that there is
plenty of exciting work to be done on supervised search in
other computing fields as well.
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