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Project Overview 
This project is motivated by the Society of Automotive Engineers (SAE) student design 
competition.  The premise of the event is to design, fabricate, and test a formula racecar 
for national competition.  For the 2004 vehicle it was desired to develop a real-time data 
acquisition and telemetry system for use with the car.  The telemetry system will be 
used to monitor various parameters related to the engine performance.  The data is 
sampled using sensors and other hardware on board the car while the car is in motion.  
It is then processed by an embedded microcontroller and wirelessly transmitted to a 
base-station in real-time where it can be further processed in software and viewed by 
engineers.  These data can serve as testing data for the engineering team and as a 
performance indicator.  This information can also be used to make adjustments to the 
car (such as to the fuel controller) to alter its performance. 
 
About the vehicle: 
The vehicle is a formula style racecar built with a space-frame chassis powered by a 
600cc motorcycle engine.  For a summary of how the engine works you can consult 
howstuffworks.com.  See the glossary below for definitions of the terms in italics.  The 
engine is controlled by another commercially obtainable embedded electronic fuel 
injection (EFI) controller.  The EFI controller uses various sensor data (see below) to 
determine how much fuel to put into the engine’s combustion chamber on every cycle of 
the engine.  On every cycle of the engine, the fuel controller processes the sensor data 
and uses some user specified information (namely a base fuel map/load table) to 
generate pulses used to control a bank of fuel injectors.  The pulse width determines the 
duration an injector stays open.  The longer an injector stays open, the more fuel goes 
into the engine for combustion.  In general, for every engine speed value (aka load site) 
there is an optimal Volumetric Efficiency (VE) that allows the engine to achieve 
maximum performance.  The larger the VE is, the greater the load on the engine.  
Maximum engine torque occurs at the highest VE load site.  It is desired to maximize 
torque through all load sites, but there are mechanical constraints that make this difficult 
to do.  However, the ideal can be approached through proper tuning of the engine 
 
 
 
 
 
 
*Denotes a reference to the movie: The Fast and the Furious, copyright 2001, Universal Studios
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UData Channels that were implemented: 
1. Engine speed (RPM) 
2. Manifold Air Pressure (MAP) 
3. Engine Temperature 
4. Air/Fuel Mixture (AF) 
5. Throttle Position (TPS) 
6. Fuel Consumption 
Motivation for the data: Items 1-5 are important parameters related to engine 
performance.  These are the main parameters that the EFI controller uses to calculate 
pulse widths.  Fuel consumption is important to know for making vehicle range 
calculations.  It is very difficult to implement mechanically, but is simple to do 
electronically.  Fuel Consumption = Σ (pulse width x fuel injector flow rate x 2).  The 
additional factor of two is needed since the engine is a batch fire system.   

Figure 1: Photo of 2004 SAE vehicle 
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USensor implementation on the vehicle U: 
1. Engine RPM is measured on the vehicle using a magnetic reluctance sensor.  A steel 
timing wheel is attached to the crankshaft of the engine.  It has pattern of 12 teeth, with 
one tooth missing, at a fixed spacing.  As the crankshaft rotates, the teeth pass under a 
magnetic reluctance sensor, which causes a sinusoidal voltage signal to develop.  The 
RPM is a function to the instantaneous frequency of this signal. 
2. The MAP sensor produces a linear 0-5 V signal which is proportional to the absolute 
air pressure inside the air intake manifold. 
3. The Engine Temperature sensor is a thermistor. 
4. The AF sensor produces a linear 0-5V signal proportional to the air fuel mixture 
extrapolated from the proportion of oxygen in the exhaust header.  This is a measure of 
the stoichiometric efficiency of the engine. 
5.  Fuel Consumption will be calculated by measuring pulse widths of the outputs to the 
fuel injectors from the EFI controller. 
 
UShort Glossary 
• Batch fire – ignition system where two (or more) pistons are fired at the same time during one cycle.  
This is opposed to sequential ignition where only one piston in the engine is fired per cycle. 
• Base fuel map/load table – a lookup table of user specified values that the EFI computer uses to 
calculate pulse widths.  The user specifies how much fuel s/he would like the computer to put in under 
general loading conditions and the computer adjusts the value based on secondary lookup tables and 
sensor data.  It is usually set by tuning the engine on a dynamometer. 
• Soichiometric efficiency – the actual air/fuel ratio that was present in the engine during the 
combustion stroke. 
• Volumetric efficiency (VE) – This is a measure of how much fuel the engine should burn effectively.  It 
is the ratio of the amount of volume of air in a cylinder divided by the maximum theoretical capacity of the 
cylinder.  
• Load site – the theoretical VE for a given engine speed range (usually at intervals of 50 RPM) 
• Batch fire – ignition system where two (or more) fuel injectors are fired at the same time during one 
cycle.  This is opposed to sequential ignition where only one piston in the engine is fired per cycle.  A 
batch fire system requires fewer injector control lines that a sequential system. 
• Base fuel map/load table – a lookup table of user specified values that the EFI computer uses to 
calculate pulse widths.  The user specifies how much fuel s/he would like the computer to put in under 
general loading conditions and the computer adjusts the value based on secondary lookup tables and 
sensor data.  It is usually set by tuning the engine on a dynamometer and through road testing. 
• Soichiometric efficiency – the actual air/fuel ratio that was present in the engine during the 
combustion stroke. 
 
UImplementation Overview U 

Analog signals are generated by sensors located on various parts of the engine and 
chassis or by outputs of the EFI ECU.  These signals required some analog circuitry for 
signal conditioning and buffering before they were fed to the ADC or timer channels of 
the PIC Microcontroller (MCU).  Discrete valued signals (such as thermistors) will go to 
ADC channels, and the time based signals will go to timer channels.  The data is 
converted to 8-bit PCM words by the MCU.  The basis of the processing is a simple 
polling loop.  On every polling loop cycle, the MCU will initiate A/D conversion on each 
ADC channel, store the results in memory, store pulse width timer data to memory, then 
construct a frame of data by retrieving the most recent data from memory and 
sequentially transmitting it to the radio modem via the UART.  The MCU has a tri-state 



bus, with all data path and peripheral elements on the bus.  All peripherals are 
controlled by memory mapped control registers.  The radio modem link sends the data 
to a receiver at the base station, most likely a laptop computer.  The raw data is be 
processed by the laptop on site and displayed in user readable text format. 
 
Simplified Block Dataflow Diagram 
 

Sensor Hardware 
All analog signals.  
Includes signal value analog 
voltages and pulse width 
modulated signals. 

PIC MCU 
Integrated Microcontroller, 
RAM memory, A/D 
Converters, timers, UART 
 

PIC UART 
Transmits raw serial data 
from on chip bus to external 
bus. 

Radio Modem 
Wireless transmission link 
driven by UART. 

Receiver 

Basestation 
Processes raw data and 
displays decoded information 
on screen. 

 
 
Sensors and analog interface circuitry 
Since all sensor signals are piggybacked from the fuel controller which is built into the 
engine, all voltage signals had to be buffered with high input impedance op-amp 
circuitry to ensure proper signal strength and integrity.  Some signals (e.g. temperature) 
are discrete valued voltage signals.  Others, such as RPM and injector controls, are 
time based signals that require pulse width measurement.  All signals are referenced to 
a common ground point.  The injector pulse control signals were slightly trickier to 
interface with since there are two of them.  However, only one of them is on at a given 
instant of time.  All that is needed for fuel consumption is the running sum of the pulse 
widths.  The two signals feeding the digital timer will simply be added using a digital 
NAND gate so only one PIC timer channel is needed.  This signal is also fed into an 
AND gate with the chip clock signal because of the nature of the measurement scheme.   
Below is a detailed description about the implementation of each analog circuit channel. 
(See the final schematics on pages 13-14). 
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• Discrete Voltage Buffers 
 
A Burr-Brown OPA340 opamp in unity 
gain configuration was used as a voltage 
buffer (figure 2).  The MOS input stage 
on this opamp provided a high input 
impedance, and the chip operated on a 
single ended 5V supply.  While it was not 
implemented, a low pass filtering 
capacitor could have been put at the 
input if noise from the car became a 
problem.  Five of these circuits were built, 
but only four were actually used for the 
system allowing for expandability. 
 
 
• Fuel Injector Pulse Buffer 
 
The fuel injector control signal is an output of the fuel controller ECU.  The ECU has a 
transistor switch attached to the battery which connects the battery to the fuel injector 
solenoid whenever fuel is delivered to the engine.  We modeled the solenoid as an 
inductor connected to the battery through a switch.  By the nature of the solenoid 
switch, a 12V high signal represented a closed injector and the low voltage signal 
represented an open injector (closed switch). 
 

 
 
We measured the EFI signal going to the injector with a scope and found that a high 
signal was near 12V and a voltage low signal was 2 - 4V.  It did not pull down all the 
way to ground.  Also, the maximum allowable input voltage to the LM311 was 
VCC+0.3V (5.3V).  Resistors R 3,4,5 served as a 1:4 voltage divider to reduce the 
dynamic range of the EFI signal.  A 12V high signal was divided down to 4V and a 2 - 

Figure 3: Injector Pulse Buffer Circuit 

Figure 2: Discrete Voltage Buffers 
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4V signal representing a low signal, was be cut down to 0.5-1V.  This output was fed to 
a voltage comparator.  The comparator compared this signal to a voltage at VCC/2 
(2.5V).  The reference was provided by R1 and R2.  The output then saturated to either 
VCC or GND depending on whether the EFI signal was high or low.   
 
A major design issue was large flyback voltage from the injector solenoid.  When the 
EFI signal switched from low to high, there was a 300V Ldi/dt flyback voltage spike 
generated by the solenoid that had to be shunted somehow otherwise even the voltage 
divider could not clamp the input properly.  To solve this, a 20V Transient Voltage 
Suppressor (TVS) zener diode was used.  It is designed to turn on quickly to shunt any 
noise spikes above 20V to ground.  This clamped the voltage and the input voltage 
divider further cut this voltage down to the allowable comparator input range.  C3 further 
served as a high frequency noise filter as well. 
 
The injectors themselves drew nearly 1A of current through the ECU and in order to 
prevent overloading of the ECU, the overall circuit impendence in parallel with the 
injector solenoid impedance had to be greater than 8 Ohms.  The solenoid winding 
impedance was 15 Ohms.  When D1 was off, the buffer input impedance was much 
higher than the solenoid impedance.  However when D1 turned on, the only buffer 
impedance was whatever was ahead of D1.  This is why the 300k for the voltage divider 
was split among two resistors.  R4 served not only as a voltage divider but also 
impedance padding. 
 
There were two EFI pulses that were out of phase with each other.  Since the overall 
running sum of all the pulse widths was going to be calculated, the two EFI pulses were 
combined with a CMOS NAND gate.   The desired logic table was as follows: 
 

EFI 1 EFI 2 Output 
1 1 X (not allowed) 
1 0 1 
0 1 1 
0 0 0 

 
• Timer Circuit 
  
In order to use the MCU’s timer circuitry to measure the EFI signal’s pulse width, the 
signal had to be chopped so that it could trigger the counter in the MCU. The pulse 
widths vary from approximately .5ms to 2.5ms. Initially, the clock output from the MCU 
was going to be used to accomplish that.  However, during bench testing it turned out 
that the MCU clock output is unable to drive much and the voltage levels are far from 
ideal TTL.  After trying to use a few different simple analog buffers without success, a 
simpler approach used. Using a NE955 precision timer chip a square wave generator 
was built and used to chop EFI signal.  For a 1ms pulse, sufficient accuracy is obtained 
by using 100-kHz chopper.  Hence, the component values used for the resistors and the 
capacitor in the timer, which operates on Schmitt trigger principle.  
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• RPM Buffer Circuit 
 
By the nature of the RPM sensor, the RPM signal is a non-constant amplitude 
frequency modulated signal and can have a large dynamic range. A magnetic 
reluctance sensor causes the amplitude of the signal to vary significantly with engine 
speed.  In a way it acts as a generator.  This has to be considered so as not to overload 
the OPA340 input. 
 

 
 
Figure 4 is basically a 5V hard limiter that is used to saturate the RPM signal to constant 
amplitude.  While the original signal looks sinusoidal (although distorted and noisy), the 
amplitude values are irrelevant and the frequency data is preserved by the hard limiter 
and outputs to the MCU as a square wave.  Its frequency varies with RPM. To sample 
the signal, first a low voltage drop germanium diode is used to reject all negative half 
cycles followed by a 100-kOhm resistor to provide sufficient signal separation between 
the ECU circuitry and the following clamping stage. Any signal with amplitude greater 
than 4.7V is clamped to by a 4.7 volt Zener diode, which is then amplified, or rather 
saturated with a high gain opamp, to a 0-5 volt square wave that can be processed by 
the MCU. An interesting problem arose while testing the circuit. The opamp would 
saturate even if for the negative cycles. Although the signal from the sensor is purely 
AC, but once the signal is rectified, it has a non-zero DC component that would saturate 
the output high. In order to prevent this, a 1uF AC coupling cap is used. Furthermore, 
the zener also prevents the input to the opamp from going more than –0.5V below 
ground and above 4.7V.   
 
UPower Supply 
A well regulated power supply was needed to power the telemetry system.  The 
standard automotive power supply (a nominally 12V lead-acid battery) is charged by an 
alternator and the actual battery voltage can vary wildly depending on a myriad of 
conditions.  It was primarily intended to drive highly supply tolerant circuits and high 

Figure 4: RPM Buffer Circuit 



power circuits like starter motors and ignition coils. All the opamps, the MCU, and the 
wireless modem required a single ended 5V supply.  A simple low dropout regulator (the 
LM2940) was used.  It is capable of regulating a 12V supply and can source up to 1A of 
current.  The worst case power budget was divided as follows: 
 

Component 
 

Maximum current 
draw 

MCU 300 mA 
Wireless Radio Modem 150 mA 
Analog Circuitry 50 mA 
Total 500mA 

 
500 mA at 5V (2.5 Watts) was well within the limits of the power dissipation of the 
LM2940 with an adequate heat sink and easily supplied by the car battery.  The actual 
current draw from the battery was nearly 1A and much of it was dissipated by the 
regulator.  A 10uF capacitor was used at the input of the regulator to serve provide 
noise filtering.  A 47uF capacitor was used at the output to provide decoupling as well 
as to further regulate any voltage drop if a sudden burst of current was needed.  10nF 
ceramic capacitors were used on the supply pins of the analog opamps to further filter 
any high frequency noise and EMI on the supply pins. 
 
PIC MCU and Programming 
At the heart of the racecar data acquisition and telemetry system is a Microchip 
Technologies PIC16F77 flash programmable microprocessor.  The PIC is clocked at 
4MHz with an instruction execution rate of 1MHz.  We utilized three of the PIC's on-chip 
peripherals: the ADC, the timers, and the UART. 
 
The PIC's ADC has eight pin-inputs which are selected through an internal MUX.  In the 
polling loop, this MUX cycles through all eight of the ADC channels, storing the acquired 
data in an array in the on-chip data memory. 
 
We used the PIC's two timers as counters controlled by external clocks.  The clock for 
timer0 is the rpm signal and the clock for timer1 is the EFI signal chopped by an 
oscillator.  At the end of the PIC's polling phase, the data from these two timers is stored 
in memory (overwriting ADC channels 3 and 4, whose input pins are grounded).  The 
value read from timer0 is proportional to the RPM rate of the motor and the value read 
from timer1 is proportional to the fuel consumption during the last program loop. 
 
After the polling phase, there is a transmission phase.  In this stage, the 8 bytes of 
acquired data are sent consecutively to the UART's transmission register.  However, 
this data is not sent directly.  First, each byte is converted into its two-ASCII-character 
hexadecimal representation.  The main reason for this is to allow the receiver to 
recognize distorted data.  Anything received data outside of the small range '0'-'9' or 'A'-
'F' can be immediately recognized as bogus.  This also made the transmitted data more 
readable during development.  A 0x0D header byte was transmitted between each 16-
byte data packet. 
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Once the transmission register is loaded, the UART peripheral handles the bit 
transmission and sets a flag bit when complete.  Program execution can continue 
immediately after the transmission register is loaded.  In steady state, the loop time is 
determined by the baud rate of the modem; in our case this was 9600 baud times 170 
bits.  This is an accurate and constant time interval because we are doing half-duplex 
transmission.  Since the transmission time for one byte is much longer that the polling 
time, all polling occurs during the transmission of one character.  The UART is always 
transmitting. 
 
 
Wireless radio link and RS232 voltage levels 
A Maxstream 9X PKG-R serial radio modem link is used to transmit the data sampled 
and processed by the MCU.  It has a maximum of 9600kps of serial data throughput 
and can transmit data wirelessly up to 3km with a direct line of sight.  It transmits in the 
900 MHz unlicensed band and utilizes a frequency hopping spread spectrum 
transmission scheme.  The modem, as it comes in the package, interfaces via standard 
RS-232 voltage levels. We first thought that we would need a level converter since the 
MCU serial output is CMOS levels. It turned out that the modem can be interfaced to 
CMOS circuits once it is stripped from the package. However, a very well regulated 
power supply has to be used for the sensitive modem circuitry.  On the receiver side, 
the standard packaging was used to interface to the RS-232 serial input of a laptop 
computer. 
 
Fabrication and PCB layout 
This system was intended to be used for vehicle racing applications; this is a rather 
harsh environment.  We made a study enclosure out of aluminum machined on a two 
axis milling machine to provide protection to the circuitry and developed a PCB (printed 
circuit board).  PCB layout was done using CadSoft EAGLE version 4.03.  First a 
schematic was entered.  Then packages were chosen and laid out on the board space 
manually.  Floorplanning and component placement was very important when trying to 
maximize trace planarity and for separating noise sensitive components.  Each sub-
circuit was laid out individually and then duplicated where applicable (there are two 
exact copies of the EFI circuit and five opamp buffers). 
 
After part placement, the critical traces were laid out manually.  These included the 
main power lines, which were routed with wider traces.  Power supply traces were made 
twice as wide as the signal traces to alleviate IR drops on the traces.  The remaining 
traces were laid out by the software's autorouter.  The autorouter allows the user to 
assign costs to different board features such as trace turns, vias, particular layers, etc.  
We used these tweaks to have the autorouter produce a two sided trace layout with as 
few top-side traces as possible.  Since we were making a single sided board, the top-
layer traces would be wired with jumpers.  There are about two dozen of these jumpers 
on our board.  The PCB was a single layer board that we made in-house using a 
negative mask transfer process.  The board was developed in sodium carbonate 
solution and etched with ferric chloride.  Finally the holes for components were drilled 
out on a two axis milling machine. 
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User Interface 
Setting up the environment was the most challenging aspect of developing the user 
interface. Various methods of reading data from an RS232 port were researched. Java 
offered a package dedicated to reading and writing from serial ports, called Javax, 
which had built in functionalities such as buffers and streams, and could easily be used 
to make a GUI interface. Unfortunately, the technology had little support and even less 
documentation. A more mainstream approach was C. Hardware resources were limited 
to notebooks running Windows operating systems, and therefore Cygwin, an application 
simulating a Linux environment in Windows, was used to read from the RS232 port. 
Although the reads were “successful” Cygwin required quite a bit of overhead, and was 
not able to support the high frequency of incoming data. Thus, a traditional Linux 
environment was used to access and read from the RS232 port.  
 
The user interface program is used to process the data coming from the PIC MCU, as 
well as display it to the user. Methods of concurrently reading and processing the data 
were tried, but were not necessary because all data could be read and processed in 
ample time. However, attention to efficiency in execution was considered when 
developing the code. 
 
The program received packets consisting of 8 fields of data, with each piece of data 
being received as two ASCII values. Incomplete packets were checked for and 
discarded and only complete packets were processed. All valid data read from the 
RS232 port was stored in two data files: raw.txt, which displays the raw data in ASCII 
format, as well as processed.txt, which shows the processed but unformatted data 
outputted from the program. Every tenth packet was displayed to the user so that the 
user could mentally process and visually see the change in data. A simple two line 
display was outputted to the user in the format: 
 
 TPS TIMER0 TIMER1 TEMP MAP  A/F 
 88% 0.00  0.001  3.40V 4.00V 1.00V 
 
The program was tested using the PIC to process random signals in the range of 0V to 
5V, simulating possible expected data from the car. Voltages were also manually 
increased and decreased to test if the program correctly processed the data. 
 
Testing 
After looking at the raw signals while the car was running and designing the proper 
analog circuitry, we tested each of the components on the bench.  Once, the unity gain, 
EFI pulse and RPM buffers were working, we connected them again to the running car 
and observed the output on the scope to verify that we get the required voltage levels 
and signal waveforms, while still powering from a bench supply.  The voltage regulator 
circuit was tested independently to see if the voltage range as required by the modem 
and the PIC would be maintained, even if the current requirement goes as high as 
500mA.  After this, operation of all analog parts together as well as the modem and the 
PIC was tested successfully with the car’s supply.  After this step we were confident that 
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the circuit would work and we proceeded to print the board and solder all the 
components together.  After debugging we made sure that made sure again that the 
transmission could be established from the PCB.  Serial data transmission was verified 
using randomly generated values on a breadboard as well as with the system 
connected to the vehicle transmitting easily verifiable static data. 
 
The Epilouge 
This was a true embedded system, complete with analog hardware, microcontroller 
firmware, front-end user software, and an aluminum box to boot to embed the whole 
thing into a peripheral that doesn’t look anything like a computer—a formula racecar.  It 
was important to test things on the bench piece by piece to make the debugging 
process easier.  That was the only thing that maintained the sanity of all involved.  By 
testing a single buffer, then two buffers, then a board, and then bench testing the entire 
system, we could be confident that the system would work before putting it into the car.  
However there were things that could not be simulated or predicted very accurately 
such as power supply noise, EMI noise, heat, and vibration.  Oddly enough, on the final 
project demo, the board actually powered up, data was being transmitted and nothing 
caught on fire.  But of course in true cynic’s fashion the actual car that this system was 
embedded into did not start up for the test due to faulty spark plugs.  (Sorry Prof. 
Edwards; We’ll work on that one).   
 
“I live my life a quarter mile at a time.  For those 10 seconds or less, I’m free.”  
  –Vin Diesel, The Fast and the Furious* 
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Figure 5: Conceptual Schematic 

 13



Figure 6: Board Schematic 

 
Note: 
 There are some inconsistencies between the part numbers on the board layout 
and on the schematic.  The reason for this is that the CAD software did not have these 
parts in its library.  Substitutions with identical packages were used. 
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Figure 7: PCB Layout 
 

 
 
 

Figure 8: PCB Mask 
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Figure 9: PIC16F77 Assembly Code Listing 
 

;4840 project, may 2004 
 
; GLOBALS 
 list p=16f77 
 include <p16f77.inc> 
 
 __CONFIG  _CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _XT_OSC 
 
c1 equ 0x20 ; define ASM alias 
tmp equ 0x21 
tmp2 equ 0x22 
tmp3 equ 0x23 
adc0 equ 0x30 
adc1 equ 0x31 
adc2 equ 0x32 
tmr0 equ 0x33 
tmr1 equ 0x34 
adc5 equ 0x35 
adc6 equ 0x36 
adc7 equ 0x37 
 
 org 0x00 ; set program origin 
reset GOTO start 
 
 org 0x04 
start 
;DISABLE INTERRUPTS 
 CLRF INTCON  
 
;INIT UART, ASSUME Fosc=4 MHZ 
 BSF STATUS,RP0 ;BANK1 
 MOVLW D'25' ; 9600 BAUD WITH 4MHZ CLK 
 MOVWF SPBRG ;BAUD RATE GENERATOR REGISTER 
 MOVLW 0x24    ;'BRGH'=1 FOR HIGH SPEED 
 MOVWF TXSTA ;XMIT STATUS REG 
 BCF STATUS,RP0 ;BANK0 
 MOVLW B'10000000' ;'SPEN' 
 MOVWF RCSTA ;RCSTATUS REG 
 
;ADC INIT 
 BSF STATUS,RP0 ;BANK1 
 CLRF ADCON1 ;INIT ALL 8 ADC PINS 
   ;WITH VDD FOR VREF 
 BCF STATUS,RP0 ;BANK0 
 MOVLW B'01000001' 
 MOVWF ADCON0 ;CHANNEL0, ADC ON, FOSC/8 
 
;PORTB INIT, 
;this I/O port was used for debugginng output 
 BSF STATUS,RP0 ;BANK1 
 CLRF TRISB ;SET ALL 8BITS FOR OUTPUT 
 BCF STATUS,RP0 ;BANK0 
 CLRF PORTB ;CLEAR PORTB TO INIT 
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;TIMER0 INIT 
 BSF STATUS,RP0 ;BANK1 
 BCF STATUS,RP0 ;BANK0 
 CLRF TMR0 ; CLEAR TIMER 
 
loop  
;This the the main program loop.  This loop consists of a  
;polling stage followed by a transmission stage. 
 
;here we set the indirect address register to point to the 
;beginning of the acquired data array 
 MOVLW adc0 
 MOVWF FSR ;LOAD FSR W/ADC0 ADDR 
 
adc_poll 
;this is the start of the polling stage 
;The following code is executed for each of the 8 ADC channels 
;Each iteration, the data from adcY is stored in mem[0x3Y]. 
 ;DELAY FOR ACQUISITION 
 CLRF tmp 
HERE1 INCFSZ tmp,1 
 GOTO HERE1 ;;; 
 
 ;START CONVERSION  
 BSF ADCON0,GO 
wait1 BTFSC ADCON0,GO 
 GOTO wait1 
 MOVF ADRES,0 
 MOVWF INDF ;POINTS TO DATA ARRAY 
 
 BTFSS ADCON0,3 
 GOTO adc_not_done 
 BTFSS ADCON0,4 
 GOTO adc_not_done 
 BTFSS ADCON0,5 
 GOTO adc_not_done 
 MOVLW B'11000111' 
 ANDWF ADCON0,1  ;CLEAR CHANNEL BITS 
 GOTO adc_done 
  
adc_not_done 
 MOVF ADCON0,0 ;INCREMENT ADC 
 ADDLW B'00001000' ; CHANNEL 
 MOVWF ADCON0  ; 
 
 INCF FSR,1  
 GOTO adc_poll  
 
adc_done 
 INCF c1,1 ;INCREMENT c1 
  
 ;OUTPUT TO PORTB FOR DEBUGGING 
 MOVF c1,0 
 MOVWF PORTB 
 
timer_poll 
;Timer polling is trivial, just copy from one  
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;register to another. 
;Timer0 is reset but Timer1 is not 
 MOVF TMR0,0 
 MOVWF tmr0 
 CLRF TMR0 
 
 BCF T1CON, TMR1ON  ;turn off timer 
 MOVF TMR1L,0 
 MOVWF tmr1 
 CLRF TMR1L 
 CLRF TMR1H 
 MOVLW B'00111110' ;1:8 PRESCALAR, EXTERNAL CLOCK, synchronous 
 MOVWF T1CON  ; 
 BSF T1CON, TMR1ON  ;turn on timer 
 
 
; XMIT PHASE 
;Here the data transmission stage begins.  All the acquired 
;data was stored in mem[0x30-0x37].  Here we simply iterate 
;through this data, again using the indirect address register. 
; 
;Before loading the UART transmission register TXREG we wait 
;for the "ready" bit to be set, TXIF.  When this bit is set, 
;we know that the previous byte of data has been sent from 
;TXREG to the UART. 
 
 ;XMIT HEADER BYTE 0x0D 
wait4 BTFSS PIR1,TXIF 
 GOTO wait4 ;;; 
 MOVLW 0x0D 
 MOVWF TXREG  ;LOAD W into TXREG 
 
 ;XMIT ADC DATA 
 CLRF tmp2 
 MOVLW adc0 
 MOVWF FSR ;LOAD FSR W/ADC0 ADDR 
array_xmit 
 SWAPF INDF,1 
 MOVF INDF,0 
 ANDLW B'00001111'  
 ADDLW 0x30 ;ASCII VALUE OF '0' 
 MOVWF tmp 
 BTFSS tmp,3 
 GOTO wait3 
 ADDLW 0x07 ;OFFSET BETWEEN '9' AND 'A' 
 BTFSC tmp,1 ;UNDO IF '8' OR '9' 
 GOTO wait3 ; . 
 BTFSC tmp,2 ; . 
 GOTO wait3 ; . 
 ADDLW 0xF9 ; . SUBTRACT 0x07 
 
wait3 BTFSS PIR1,TXIF ;'TXIF' 
 GOTO wait3 ;;; 
 MOVWF TXREG  ;LOAD W into TXREG 
 
 INCF tmp2,1 
 BTFSC tmp2,0  ;IF FIRST ITERATION 
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 GOTO array_xmit 
 
 INCF FSR,1 
 BTFSS FSR,3 ;SET AFTER 8 ITERATIONS 
 GOTO array_xmit  
 
 GOTO  loop 
 end 
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Figure 10: User Interface Listing 
#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <sys/select.h> 
#include <fcntl.h> 
#include <termios.h> 
#include <string.h> 
#include <errno.h> 
 
#define DEBUG 0    
#define BSIZE 1700       /*this is actually the last index in buffer*/ 
#define PSIZE 17         /*packet size (includeing \r in header)*/ 
#define DATINPACK 8      /*number of data lines in packet*/ 
#define VPI .0195        /*voltage per incriment*/ 
#define RPMCONV 282.353  /*conversion rate for v -> RPM*/ 
#define TPSOFF 0.51   /*voltage offset for throttle*/ 
#define TPSCONV 0.25     /*throttle conversion rate*/ 
#define MAPCONV 2.72     /*manifold absolute pressure conversion rate*/ 
#define MAPOFF 1.51      /*V offset for manifold absolute pressure*/  
#define PRESCALER 8      /*Prescaling used to encode fuel consumption*/ 
#define T1FREQ 100000    /*timer one clock freq*/ 
#define FLOWRT 0.004505  /*flowrate for timer 1*/ 
#define OUTPUTCNTR 10  /*used to printf every 10th packet*/ 
 
/* 
 * Code to open and read RS232 is modified code from RS232.c written by 
 * Cristian Petrus Soviani 
 */ 
 
int main () { 
 
  /*variables for opening/reading RS232*/ 
  int fd, nbrx, nbtx, ptx, prx, nb; 
  fd_set rfdsin, rfdsout; 
  char buffer [BSIZE+1]; 
  int bufitr = 0; 
  struct termios my_termios; 
 
  int i; 
  int j; 
  int packetcntr = 0; 
  int ifprint = 1; /*0 if it hsould print*/ 
  unsigned int first; 
  unsigned int second;//used for getting data 
  int fndx; //used to get first char 
  int sndx; //used to get second char 
  int cindex; //index to cross check if a packet is incomplete; 
  FILE *fp; 
  FILE *f2; 
  unsigned int temp; 
  double mydata; 
  double myoutput;   
  double totalFC = 0;   
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  fp = fopen ("raw.txt", "w"); 
  f2 = fopen ("processed.txt", "w"); 
  fd = open ("/dev/ttyS0", O_RDWR | O_NOCTTY); 
 
   
   //configure serial port 
  tcgetattr(fd, &my_termios); 
  tcflush(fd, TCIFLUSH); 
  my_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL; 
  cfsetospeed (&my_termios, B9600); 
  tcsetattr(fd, TCSANOW, &my_termios); 
 
  /*print header*/ 
  printf ("\n\tTPS\tTIMER0\tTIMER1\tTEMP\tMAP\tA/F\n"); 
   
  /*read first potential packet*/ 
  for (bufitr = 0; bufitr<PSIZE; bufitr++) { 
        read (fd, &buffer[bufitr], 1);   
 fprintf (fp, "%c", buffer[bufitr]); 
  } 
 
  /*for all subsequent packets*/ 
  while (1) { 
    read (fd, &buffer[bufitr], 1);  
    fprintf (fp, "%c", buffer[bufitr]); 
  
    if (buffer[bufitr] == '\r') { 
      /*set compare index*/ 
      if (bufitr < PSIZE) 
 cindex = BSIZE+1 +bufitr - PSIZE; 
      else 
 cindex = bufitr - PSIZE; 
       
      /*process if complete*/ 
      if (buffer[bufitr] == buffer[cindex]){ 
 fndx = cindex+5; 
 /* process data - FIRST TWO CHANNELS IGNORED!*/ 
 for (j=2; j<DATINPACK; j++) { 
   /*check if near end of buffer*/ 
   if (fndx<BSIZE) 
     sndx=fndx +1; 
   else if (fndx==BSIZE) 
     sndx = 0; 
   else if (fndx>BSIZE) { 
     fndx = 0; 
     sndx = 1; 
   } 
     
   /*convert first char to hex*/ 
   if (buffer[fndx] >= '0' && buffer[fndx] <= '9') 
     first = buffer[fndx] - 48; 
   else if (buffer[fndx] >= 'A' && buffer[fndx] <= 'F') 
     first = buffer[fndx] - 55; 
    
   /*convert sec char to hex*/ 
   if (buffer[sndx] >= '0' && buffer[sndx] <= '9') 
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     second = buffer[sndx] - 48; 
   else if (buffer[sndx] >= 'A' && buffer[sndx] <= 'F') 
     second = buffer[sndx] - 55; 
    
   first = first<<4; 
   first = first | second; 
   mydata = first*VPI; 
    
   switch (j) { 
   case 2:  
     myoutput = (mydata - TPSOFF) * TPSCONV * 100; 
     if (ifprint == 0) 
  printf ("\t%.0f%%", myoutput); 
     break; 
   case 3: 
     myoutput = mydata * RPMCONV; 
     if (ifprint == 0) 
      printf ("\t%.0f", myoutput); 
     break; 
   case 4: 
     myoutput = mydata * PRESCALER * FLOWRT / T1FREQ; 
     totalFC += myoutput; 
     if (ifprint == 0) 
  printf ("\t%.3f", totalFC); 
     break; 
   case 5: 
     myoutput = mydata; 
     if (ifprint == 0) 
  printf ("\t%.2f", myoutput); 
     break; 
   case 6: 
     myoutput = mydata * MAPCONV + MAPOFF; 
     if (ifprint == 0) 
  printf ("\t%.2f", myoutput); 
     break; 
   case 7: 
     myoutput = mydata; 
     if (ifprint == 0) 
  printf ("\t%.2f", myoutput); 
     break; 
   } /*end switch*/ 
     
   fprintf (f2, "%f ", myoutput); 
    
   //iterate internal buffer iteraror 
   fndx +=2; 
    
 }/*end for*/ 
 fprintf(f2, "\n"); 
 printf("\r"); 
 
 packetcntr++; 
 ifprint = packetcntr % OUTPUTCNTR; 
      }/*end check for complete packet*/ 
    }/*continue reading*/ 
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    /*iterate buffer*/ 
    if (bufitr == (BSIZE)) /*circle around if end of buffer*/ 
      bufitr = 0; 
    else  
      bufitr++; 
  } 
  printf("bye\n"); 
   
  close (fd); 
  fclose(fp); 
} 
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Figure 11: Sample output from user interface software 
 

68.175000 0.000000 0.000002 2.574000 8.246080 2.496000  
61.350000 0.000000 0.000001 2.691000 8.458240 2.515500  
61.350000 0.000000 0.000001 2.769000 8.617360 2.574000  
61.350000 0.000000 0.000001 2.769000 8.776480 2.613000  
61.350000 0.000000 0.000001 2.769000 8.776480 2.613000  
60.862500 0.000000 0.000001 2.730000 8.723440 2.613000  
61.350000 0.000000 0.000001 2.749500 8.723440 2.613000  
61.350000 0.000000 0.000001 2.749500 8.723440 2.613000  
60.862500 0.000000 0.000001 2.749500 8.829520 2.652000  
60.862500 0.000000 0.000001 2.691000 8.723440 2.593500  
60.862500 0.000000 0.000001 2.749500 8.723440 2.613000  
60.862500 0.000000 0.000001 2.749500 8.776480 2.613000  
60.862500 0.000000 0.000001 2.749500 8.776480 2.632500  
60.862500 0.000000 0.000001 2.730000 8.723440 2.613000  
60.862500 0.000000 0.000001 2.749500 8.776480 2.632500  
67.687500 0.000000 0.000001 2.847000 8.988640 2.691000  
61.350000 0.000000 0.000001 2.769000 8.935600 2.652000  
61.350000 0.000000 0.000001 2.710500 8.723440 2.593500  
61.350000 0.000000 0.000001 2.730000 8.723440 2.593500  
61.350000 0.000000 0.000001 2.769000 8.776480 2.613000  
61.350000 0.000000 0.000001 2.749500 8.776480 2.632500  
61.350000 0.000000 0.000001 2.730000 8.723440 2.593500  
61.350000 0.000000 0.000001 2.749500 8.829520 2.632500  
61.350000 0.000000 0.000001 2.730000 8.776480 2.613000  
61.350000 0.000000 0.000001 2.730000 8.776480 2.613000  
61.350000 0.000000 0.000001 2.691000 8.670400 2.574000  
61.350000 0.000000 0.000001 2.749500 8.723440 2.593500  
61.350000 0.000000 0.000001 2.769000 8.776480 2.632500  
61.350000 0.000000 0.000001 2.749500 8.829520 2.632500  
61.837500 0.000000 0.000001 2.730000 8.723440 2.613000  
61.350000 0.000000 0.000001 2.769000 8.776480 2.632500  
60.862500 0.000000 0.000001 2.749500 8.776480 2.613000  
60.862500 0.000000 0.000001 2.749500 8.776480 2.613000  
60.862500 0.000000 0.000001 2.652000 8.564320 2.554500  
60.862500 0.000000 0.000001 2.749500 8.670400 2.574000  
60.862500 0.000000 0.000001 2.730000 8.776480 2.613000  
60.862500 0.000000 0.000001 2.749500 8.723440 2.632500  
60.862500 0.000000 0.000001 2.730000 8.776480 2.613000  
60.862500 0.000000 0.000001 2.730000 8.776480 2.632500  
60.862500 0.000000 0.000001 2.749500 8.723440 2.613000  
60.862500 0.000000 0.000001 2.730000 8.776480 2.613000  
60.862500 0.000000 0.000001 2.730000 8.723440 2.593500  
60.862500 0.000000 0.000001 2.749500 8.670400 2.593500  
60.862500 0.000000 0.000001 2.769000 8.776480 2.632500  
60.862500 0.000000 0.000001 2.730000 8.829520 2.632500  
60.862500 0.000000 0.000001 2.730000 8.617360 2.574000  
60.862500 0.000000 0.000001 2.749500 8.829520 2.632500  
60.862500 0.000000 0.000001 2.749500 8.723440 2.593500  
60.375000 0.000000 0.000001 2.749500 8.829520 2.652000  
60.862500 0.000000 0.000001 2.671500 8.617360 2.574000  
60.862500 0.000000 0.000001 2.710500 8.670400 2.574000  
60.862500 0.000000 0.000001 2.749500 8.723440 2.593500  
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